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ABSTRACT 

The lsminar, incompressible, time-dependent boundary layer equations 

are solved by the method of finite differences. The flow is assumed to 

possess cylindrical symmetry, finite transverse boundaries, and no swirl. 

Axial pressure gradient is accounted for. The non-linear governing 

differential equations are approximated by linear explicit finite 

difference equations, without linearizing the differential equations. 

Karplus' criterion is used to determine the finite step sizes conforming 

with numerical stability of the computation scheme. 

The method developed is used to study the transient response of 

laminar confined jet mixing to axial velocity fluctuations superimposed 

at the jet exit, i.e., at the entrance section of the mixing region. 

The computer time required, though large, is comparable with that for 

the solution of the time-dependent Navier Stokes equations using 

implicit, unconditionally stable computation schemes. 

For the flow configuration investigated, the initial velocites at 

the entrance of the mixing region correspond to a Reynolds' number of 

1650 for the jet, and 1400 for the surrounding annulus, resulting in an 

overall flow with a Reynolds' number of 2900 in the confining pipe. A 

sinusoidal oscillation with an amplitude of five per cent of the local 

velocity is superimposed on the axial velocity at the entrance section, 

and the resulting transient flow is computed. The study is limited by 

the available computer facilities. It is found that the distortion of 

the introduced wave increases with increasing frequency, as does the 

transient time for the flow. In the cases considered, the frequency of 

the wave in the resulting motion is the same as that of the superimposed 

wave. Also, when the flow attains steady state, the amplitude in the 
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downstream direction is larger than that in the upstream direction. 

When the Reynolds' numbers are decreased to 250 (jet), 228 (annulus) 

and 496 (overall flow), no distortion is observed even for the super- 

imposed oscillations that undergo considerable distortion for the 

previous configuration with higher Reynolds' numbers. 

As a reliability test of the method developed, first the problem 

of steady entrance flow in a porous pipe is solved. Close agreement 

(within 0.8 per cent) of the solutionis obtained with the published 

results of an unconditionally stable computation scheme 1" . Results 

are also obtained for Poiseuille flow with a superimposed oscillating 

pressure gradient and compare favorably with an available analytical 

2 solution . 

In addition, the method is used to obtain velocity profiles for 

certain steady, confined flows for which published numerical solutions 

are already available 3,495 . However, these latter have been obtained 

by solving the steady Navier Stokes equations using unconditionally 

stable implicit schemes of computation. Comparison of the solutions 

shows a maximum deviation of about twelve per cent which is limited 

to the region close to the entrance section. The deviation is smaller 

in regions further downstream. The computer time needed is, however, 

much less using the explicit scheme developed. 

* For all numbered references, see bibliography. 
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CHAPTER I 
INTRODUCTION 

Analytical problems of viscous fluid mechanics occur throughout 

many fields of science and technology - aerodynamics, heat transfer, 

oceanography and meteorology, to mention only a few. Such problems 

may be analyzed by solving the equations governing viscous fluid flow. 

These equations, the Navier Stokes equations, coupled with the equation 

of continuity, constitute a high-order differential system, and are 

non-.linear, so that exact solutions have been found in only a few 

special cases. These solutions are mostly limited to steady flows. 

Analyses using simplified forms of the Navier Stokes equations have 

yielded solutions in good agreement with experimental results. The 

most important among these was developed by Prandtl who assumed that 

the viscosity effects are important in a thin fluid layer near the flow 

boundaries. The Navier Stokes equations then reduce to the boundary 

layer equations. 

Due to the mathematical nature of the Navier Stokes equations 

(elliptic partial differential equations), their complete solution 

requires specification of the conditions on the closed boundary of a 

region. Hence, investigation of flows by solution of the Navier Stokes 

equations necessitates that a boundary condition be also prescribed on 

the downstream end of the flow field. This may offer no difficulty in 

some cases, as, for example, in the investigation of developing flows 

for which the fully developed flow pattern is already known. However, 

interest may often lie in studying exclusively the effects of an 

upstream condition on the flow field when no prior information is 

available regarding the condition on the downstream end. A proper 
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downstream boundary condition for such flows is one that does not 

appreciably affect the flow upstream. The selection of such a condition 

is not always impossible, but has to be made by trial and hence requires 

considerable numerical experimentation 
6 ; certain assumptions and 

7 approximations may also be sometimes necessary . In addition, the 

elliptic Navier Stokes equations require an iterative method of 

solution. 

However, a flow satisfying the basic assumptions of the boundary 

layer theory may be studied with the help of the boundary layer equa- 

tions. The flow is then considered to have an "open" downstream 

boundary. Prior knowledge of the downstream boundary condition is no 

ionger required. Also, the solution may be obtained by "marching" 

forward in the downstream direction, conditions downstream being 

uniquely and explicitly determined by the conditions upstream. Hence, 

flows with obstacles in their path may not be studied by using the 

boundary layer equations. 

Until about two decades ago, not much attention was paid to the 

subject of unsteady laminar boundary layer flows. It was felt that 

boundary layer growth took place in such a short time that the flow 

may be considered steady. Early attempts to discuss unsteady laminar 

boundary layer flows were mainly restricted to initial phases of a 

motion starting from rest and to oscillatory motions without a mean 

flow. However, time-dependent boundary layer flow problems arise in 

connection with many interesting and important fluid mechanics problems 

and then a detailed investigation of unsteady flows is required. An 

example of such time-dependent flows is the motion of a vehicle with 

variable speed over its entire trajectory. The impulsively started 
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flow is a special case of these types of problems. 

The unsteady, laminar, boundary layer flow problem may be solved 

in its differential form using analytical methods or in its correspond- 

ing finite difference form using numerical techniques. 

Analytical Methods For Exact Solutions 

The analytical methods of obtaining exact solutions of the unsteady 

boundary layer equations may be classified as follows: 

Method of Successive Approximations 

C. C. Lin's Method 

Method of Series Expansions 

Method of Similar and Semi-Similar Solutions 

Detailed discussion of these methods may be found in found in 

Reference 8. Only their applications and limitations are mentioned 

herein. 

Method of Successive Approximations. The integration of the unsteady 

boundary layer equations can be carried out in most cases by a process 

of successive approximations which, in essence, is an iteration procedure. 

The method can be applied to study periodic boundary layers as well as 

boundary layer flows impulsively started from rest. The limitation of 

the method is that the complexity of the iteration process increases 

with the number of higher order terms included in the approximation. 

Also, the convergence of the final approximation to the exact solution 

depends on the choice of the starting approximation. 

C. C. Lin's Method. 9 C. C. Lin's method , based on the theory of 

harmonic oscillations, is applicable to problems involving periodic 

motions of the free stream. 'The quantities under consideration are 
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suitably averaged and the equations describing the oscillatory components 

are linearized. The method may be used for flow problems with high- 

frequency oscillations only. 

Method of Series Expansions, Problems involving oscillations may 

be solved also by series expansion of the solution in ascending powers 

of a parameter related to a co-ordinate of the problem. 

In 1908, Blasius 10 used this approach to obtain solutions for the 

impulsive motion of a cylinder and for the uniform acceleration of a 

cylinder in an incompressible fluid. His results were improved upon 

by Goldstein and Rosenhead 11 in 1936, and further generalized by 

Watson IL2 in 1955. In 1951 Moore 13 employed the series solution method 

to analyze the problem of the lsminar compressible boundary layer over 

a flat plate moving with a time-dependent velocity. In 1955, Ostrarch 14 

extended Moore's results to the case of an isothermal flat plate. In 

1957, Cheng and Elliot 15 studied the development of the boundary layer 

over a semi-infinite flat plate starting from rest in an incompressible 

fluid. In 1961, the method was used by Kestin, Maeder and Wang l6 to 

study the effect of a longitudinal sine wave on the boundary layer along 

a flat plate and in 1962 by Hori 17 to investigate the boundary layer 

along a cylinder of arbitrary cross-section in a fluctuating main stream. 

This method may also be considered as a small perturbation method 

and is suitable when the frequency of the oscillation is small. Also, 

owing to mathematical difficulties, the number of terms of the expansion 

is limited and the solution is accurate only for small values of the 

perturbation parameter. 
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Method of Similar and Semi-Similar Solutions. The method of 

similar or semi-similar solutions reduces the number of independent 

variables of a problem through the use of a suitable transformation. 

This simplifies the mathematics of the problem, but is usually 

applicable only to a limited number of special cases. 

In 1955, this class of solutions was examined by Schuh 
18 , and in 

1960 and 1962, by Hayasi 19, 20 21 22 
. In 1957, Cheng and in 1960, Hassan 

used this method to study the flat plate problem and in 1958, Yang 23 

studied the stagnation point flow using a similar approach. 

A general review of solutions of non-steady laminar boundary layer 

equations is contained in Reference 24. 

Analytical Methods For Approximate Solutions -- 

The mathematical difficulties associated with obtaining exact 

solutions of the unsteady laminar boundary layer equations are very 

considerable, in spite of the fact that the actual problems considered 

represent only simple special cases. The general problem of the flow 

of a fluid around a body of arbitrary shape, which may be important 

in practical applications, cannot be completely solved exactly. Approximate 

methods have been developed which, in such general cases, lead quickly 

to a sufficiently accurate answer. 

In 1921, von Karman 25 and Pohlhausen 26 applied the integral 

method to obtain solutions allowing determination of the boundary layer 

thickness along flat or curved surfaces. In 1954, Lighthill 27 used 

the von Karman-Pohlhausen method to investigate the response of a 

laminar boundary layer to fluctuations of the free stream velocity 

about a steady mean. Some other works related to the integral method 

are found in References 28, 29, 30 and 31. In 1940, the integral 
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method was improved upon by Schlichting and Ulrich 32 . The main advan- 

tage of this improved method lies in the fact that transverse gradients 

of velocity are obtainable more accurately. This might prove important 

in investigations of stability of velocity profiles in the boundary 

layer. 

Various approximate methods have been developed by several investi- 

gators for the solution of the lsminar unsteady boundary layer equations. 

A reasonably extensive list of references may be found in Reference 8. 

In general, the approximate methods lead in most cases to a quick 

solution, but their accuracy is limited in spite of the complex algebraic 

manipulations involved. 

Finite Difference Methods 

Most analytical methods of solution of the boundary layer equations 

are either cumbersome, demanding impracLica1 amount of work (for exact 

solutions), or have limited accuracy (for approximate solutions). Further, 

they lack generality of application. The alternative method of step- 

by-step integration, performed analytically or numerically, overcomes 

these drawbacks. The numerical integration requires an impracticable 

amount of work, not acceptable if a fast digital computer is not avail- 

able. However, with the recent rapid development of large memory high- 

speed digital computing machines, numerical methods have acquired great 

importance in the investigation of complex fluid flow problems. No 

linearization or crucial simplifying assumptions are necessary. A wide 

variety of boundary and initial conditions may be handled with only 

minor changes in the basic method of solution. The potentiality of the 

numerical methods has drawn much attention and several schemes have been 

developed for the solution of steady as well as unsteady boundary layer 



equations. To ensure convergence of the numerical solution to the exact 

solution of the differential equations, various stability criteria have 

also been formulated. 

Among the earliest and the basic developments of numerical methods 

for the solution of steady boundary layer equations are the works due 

to Friedrich 33 and Rouleau and Osterle 34 33 . In 1952, Friedrich 

developed an explicit finite difference method to obtain velocity 

distributions in the mixing region of unconfined co-axial jets. The 

computational ease of the explicit scheme was, however, accompanied 

by stability restrictions which severely limited the permissible grid 

size ratios and, hence, limited the applicability of the method. 

In 1954, these limitations were eliminated by the method developed 

by Rouleau and Osterle 34 for constant pressure flows with rectangular 

geometry. The computation scheme was explicit in the direction ol the 

flow, but implicit in the transverse direction. Non-negative axial 

velocity was the only requirement for numerical stability. 

In 1959, the work of Rouleau and Osterle was extended by Bodoia 35 

by including pressure variation. Therefore, this method became applicable 

to confined flows. The additional equation necessary to determine the 

pressure was obtained by application of the boundary conditions on the 

transverse component of the velocity. Essentially, this was equivalent 

to considering conservation of total mass flow rate across transverse 

sections of the flow field. 

In 1961, Hornbeck 1 adapted the method of Bodoia to study flows 

with cylindrical geometry. Hornbeck investigated the development region 

of a flow in a porous pipe with either constant or local-pressure- 

dependent velocity through the wall for both uniform and parabolic inlet 
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velocity profiles. A variable-mesh technique allowed the use of small 

mesh sizes in regions of high velocity gradients, while still permitting 

larger mesh sizes in regions of slowly varying velocities. This 

minimized computational time and round-off errors. The flow problem 

was also studied by solving both the axial and the radial momentum 

equations together with the continuity equation. The results in both 

cases were essentially the same, except in regions very close to the 

pipe inlet (less than l/20 pipe diameter downstream from the entrance).* 

In 1960 a totally explicit computational method was developed by 

wu 36 for the numerical solution of steady laminar boundary layer 

equations. The method was claimed to be applicable for flows over 

flat plates or curved walls with pressure and wall temperature variations 

in the direction of flow. Prescribed variations of fluid properties 

as functions of fluid temperature and pressure could be handled also. 

Excluding cases of extremely high temperatures and very low densities, 

the stability requirements were not as severe as believed by other 

investigators who devised unconditionally stable implicit schemes. For 

normal temperature ranges as encountered in incompressible and most 

compressible flows, a small amount of computer time was required to 

obtain a solution. For hypersonic flows involving extreme temperatures, 

use of the Stewartson transformation led to a reasonable computation time. 

In 1966, similar explicit finite difference computation scheme and 

stability criteria were used by Schuyler and Torda 37 to study steady 

state combustion of solid propellant rockets. 

n The second method was, however, extremely sensitive to mesh sizes 
and to the Reynolds number of the flow. 
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The numerical works referred to above were all restricted to steady 

flows only. 38 In 1965, Farn investigated numerically the unsteady 

incompressible laminar boundary layer flows with rectangular or 

curvilinear geometry. Velocity and temperature profiles were computed 

for the Blasius flow with a superimposed oscillation and for the 

impulsively started wedge flow. The finite difference scheme used was 

explicit in both space dimensions as well as in time. High accuracy 

was achieved. An attempt was also made to investigate the hydro- 

dynamic stability of the Blasius flow using the method developed, but 

this effort did not meet with success. 

Numerical solution of the unsteady boundary layer equations for 

flows with cylindrical geometry represents a forward step in the 

development of finite difference techniques. The development of such 

a method is the aim of the present work. An all-explicit computation 

scheme is devised for the numerical investigation of time-dependent, 

laminar, incompressible boundary layer flows with cylindrical symmetry. 

Pressure variation is taken into consideration so that confined flows 

may be included among the applications. 

The flow problem is formulated as an initial-boundary value problem 

using the boundary layer equation in the axial direction together with 

the continuity equation and appropriate initial and boundary conditions. 

The equations are approximated by their finite difference forms such 

that quantities at any point may be expressed explicitly in terms of 

known quantities only. Numerical stability is ensured by satisfying 

Karplus' 39 stability criterion . Convergence of the obtained numerical 

solution to the exact solution of the initial-boundary value problem is 

then established under the hypothesis due to Lax 40 . 
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If the initial conditions correspond to some steady state flow, 

they may be generated by the scheme developed prior to the solution of 

the time-dependent problem. 

The method is applied to study the time response of the mixing 

region of a circular jet in a confined co-axial flow to fluctuations 

about the steady state velocities. The investigation is limited to the 

case of homogeneous mixing with no heat transfer and no chemical reaction, 

although the method is capable of handling the case without such 

simplifying restrictions. 

Steady state mixing of jets in unconfined flows has been investi- 

gated experimentally as well as numerically for the past several years. 

Both lsminar and turbulent, as well as compressible and incompressible, 

cases have been considered. However, confined mixing has been only 

41 recently investigated experimentally by Wood and numerically by 

Seider 4 for the laminar, incompressible case with chemical reaction. 

The Navier Stokes equations were transformed to the vorticity and stream 

function equations which were then solved to obtain velocity profiles. 

Negligible axial diffusion was assumed in the determination of 

concentration profiles. Also, the turbulent jet in a confined outer 

42 stream has been investigated analytically by Hill . 

Unsteady mixing of jets in confined flows is studied in the present 

investigation. To the best of the author's knowledge, this problem has 

not been previously considered, either experimentally or numerically. 

At the present, analytical investigation is probably beyond realization. 

Through the method of finite differences, not only is a solution 

obtainable, but a wide variety of initial and boundary conditions may 

be accommodated with only minor modifications of the method. If an 



analytical method is used, each new type of boundary or initial condition 

may require a different method of solution, if indeed a solution is 

at all obtainable. The non-linear terms in the equations make 

analytical solutions difficult, but present comparatively less difficulty 

in the finite difference methods. 

The use of finite differences is, nevertheless, not without 

limitations. The solution of a finite difference equation approaches 

the exact solution of its corresponding differential equation as the 

mesh point density is increased. This simultaneously increases the 

number of computations required for obtaining the solution for upto 

any reasonable values of more than two independent variables. Hence 

large amount of computer time and storage space become necessary. 

This also increases the cost of solution. Thus ) numerical methods 

suffer from practical and economic limitations due to available 

computer speed and storage, and its hi'gh cost of operation. 
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CHAPTER II 
ANALYSIS OF PROBLEM 

Objective 

The objective of the present work is to determine the time-dependent 

flow pattern in the.mixing and developing region of a circular jet con- 

fined within a co-axial circular pipe. A time-dependent finite amplitude 

oscillation is superimposed on the steady state axial velocity at the 

jet exit section. The temporal reaction to such oscillation of the 

mixing region is then investigated. The general features of the problem 

are shown in Figure 1. 

The problem is to be analyzed by solving the unsteady laminar 

boundary layer equations. These equations are based on a number of 

simplifying assumptions. 

Assumptions 

1. The flow is initially laminar. 

2. The boundary layer assumptions are valid. 

3. Condition of no slip exists at all walls. 

4. The flow pattern possesses axial symmetry with no swirl. 

5. Fluid in the inner pipe is the same as in the surrounding 

co-axial annulus. Therefore, there is no diffusion or chemical reaction. 

6. The fluid is incompressible with constant physical properties 

throughout the flow field. 

7. Isothermal flow conditions exist in the entire flow field. 

8. Flows in the inner pipe, as well as in the annulus, are fully 

developed right up to the axial section where the inner pipe ends, i.e., 

effects due to termination of inner pipe are neglected. 

These assumptions may be briefly justified as follows: 
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The object of the present work is to develop a method for solution 

of the laminar flow equations. Investigation of the order of magnitude 

of the terms has shown the boundary layer equations to be valid. 

Assumption 3 arises from the characteristics of a viscous fluid flowing 

along a solid, non-porous boundary. Assumptions 4, 5, 6 and 7 simplify 

the differential equations governing the flow and reduce the number of 

dependent variables to be evaluated. Since the numerical method of 

investigation is not basically affected by the initial and boundary 

conditions, the flow field may have any prescribed velocity profile at 

the entrance section. 

Several of the above assumptions may be relaxed after this 

simplified problem has been solved. A more general solution may then 

be attempted at the expense of only increasing the number of variables 

to be evaluated, and hence the amount of computations. The present 

simplified form is of value in that it provides the basic approach to 

general problems of this class. 

Part I 
The Time-Dependent Problem 

Governing Differential Equations, Initial Conditions and Boundary Conditions _---- -.-__ ~---__-~ ~-- -.~ 

Governing Differential Equations. The differential equations 

describingthetime-dependent flow are obtained by considering conser- 

vation of mass and momentum in the flow field. These are the continuity 

and the Navier Stokes equations. Neglecting terms of the first order in 
V 
$, these reduce to the boundary layer equations. Since these equations 

Z 
are well known, only their final form is given. 

Conservation of momentum (in the axial direction)leads to the boundary 
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layer momentum equation. 

av avZ z+v -+ V avZ Ian va .Y-, 
at r ar ZZF=-p az+y% c 

avz ! 
ar -: 

Conservation of mass leads to the continuity equation. 

i a avZ -- 
.Y ar 

(rY Vr) + - = 0 az 

(1) 

(2) 

where y = 0 in the Cartesian co-ordinate system 

and y = 1 in the cylindrical co-ordinate system. 

The problem is formulated in cylindrical co-ordinates. Hence in 

cylindrical co-ordinates, 

Momentum Equation 

avZ av 
-+ v avZ a% av 
at 

z+v -= 1iQ2.v z+v z 
r ar z a2 - F az FrK (3) 

(4) 

Continuity Equation -- 

V 
1”+ 

avr avz 
-+--0 ar az r 

In the above equations 

V = v Z z (r, z, t) is the axial component of velocity, 

V = v r r (r, z, t) is the radial component of velocity, 

P = p (z, t) is the pressure. 

A unique solution of Equations (3) and (4) requires specification 

of initial conditions and boundary conditions. 

Initial Conditions. 

At t = 0: for 0 5 r (R and z 2 0. 

The velocities are given by their steady state values 

( i.e., for t < 0) together with the initial values 

(i.e., at t = 0) of the superimposed time-dependent 
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variations. 

V- (r, Z, 0) = v_ (r, z) +6v7(r3 zy 0) I IS I 

:: (5) 

vz (r, z) +6v z ( r, z, 0) I 
S 

vz (r, z, 0) = 

Here, vr (r, z) and v z (r, z) 
S S 

by solving Equations (3) and 

are the steady state velocities determined 

4) with avZ -= 0 
at * 

6vr and 6vz are the radial and the axial components respectively of the 

deviation in steady state velocities due to the superimposed time- 

dependent variation. 

It is to be noted that the initial conditions (5) above are so defined 

that 

vz (r, z, 0) # vz (r, z) 
S 

and v r (r, z, 0) # vr (r, z) 
S 

Boundary Conditions. The general boundary conditions of the problem 

for t > 0 are as follows: 

1. At r = 0: for z ) 0 

The condition of axial symmetry yields: 

vr (0, z, t) = 0 

avZ 

ar (0, z, t) 

=o 

2. At r = R: for z > 0 - 

(6) 

The condition of no slip and no mass transfer through 

the stationary non-porous boundary leads to 

vr (R, z, t) = 0 

(7) 
vz (R, z, t) = 0 
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3. At z = 0: for OzrlR 

vr (1^, 0, t) = vr (r, 0) + 6vr (r, 0, t) 
s 

(8) 
vz (r, 0, t) = vz (r, 0) + dvz (r, 0, t) 

s 

Equations (3) and (4) are valid in the entire flow field. However, 

their form becomes indeterminate at the centerline, i.e., at r = 0, and 

hence, requires some modification at this point. 

Differential Equations At The Centerline. --- _ -~_I In the light of the 
av 

boundary conditions (5) at r = 0, Z it is noted that the term : - 
ar 

appearing in equation (3) and the term > appearing in Equation (4) 

0 are of the indeterminate form - at r = 0. 
0 It is necessary to replace 

these terms by their corresponding determinate forms thereby obtaining 

the modified forms of Equations (3) and (4) which are valid at the 

centerline. The indeterminacy is removed by using L'Hospital's rule 

for these terms. Thus, 

Lim 1 avz c 1 -- = 
r-+0 r ar r+O r r+O 1 

Therefore, 
Lim 1 avz a2v 

c I 
-- 4 

r+O r ar =ar2-lrz0 

Similarly, 

Lim vr = Lim 
avr 

i& [VT1 - 

r-to F, r+O [7 c 1 = Lim ar 

2 [r] x+0 ' 

av 
i.e., Lim vr _ r 

r-t0 F ar 
r=O 

(9) 

(10) 



Hence, Equations (3) and (4) have the following form at the 

centerline r = 0 

av avz z+v -=-- 12. 
a2v 

at z az P az + 2v * 

av avz 
21--r +-=o ar az 

(3a) 

(ha) 

The flow problem thus reduces to an initial-boundary.value problem 

described by the non-linear partial differential Equations (3) and (4), 

together with their modified form (3a) and (ha) at the centerline, 

subject to the initial conditions (5), and the boundary conditions (6), 

(7) and (8). 

It is noted at this stage, that the problem involves three unknowns - 

vr(r, z, t), vz(r, z, t) and p(z, t), but there are only two equations 

for their determination. Thus, apparently, an infinite number of 

solutions are possible. To obtain a unique solution, it is necessary 

to impose a valid and unique constraint on the problem. 

Equation of Constraint 

For a flow confined within non-porous, solid boundaries in the 

transverse direction, with no sources or sinks within the flow field, 

the mass rate of flow across a complete cross-section, is invariant with - 

the axial location of the section. 

R 
Thus 

s 2nr dr p vz = constant for all axial positions. 
0 (11) 

Hence, 

(12) 

The sequence of differentiation with respect to z and integration with 
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respect to r may be interchanged since the limits of integration are 

independent of z. Reversing the order of operations of differentiation 

and integration and dividing by the non-zero constant 27~p, Equation (10) 

may be written as 

R 

I 
airz 

0 
rcdr=O (13) 

Equation (13) is the integral form of the continuity equation obtained 

by integrating the continuity equation (4) over an entire c,ross-section. 

(The derivation is contained in Appendix A.) 

Equation (13) provides the additional necessary equation of 

constraint. 

Thus the flow problem is governed by a system of three equations, 

(3), (4) and (13), (together with (3a) and (ha) for the centerline) in 

three unknowns vr, vz and p and subject to the necessary number of initial 

and boundary conditions (5), (6), (7), (8) SO that a unique solution is 

now obtainable. 

The steady state velocities vr (r, z) and vz (r, z) appearing in 
s S 

the initial conditions (5) and the boundary conditions (8) are obtained 

as the solution of the time-independent form of equations (3), (4), (3a) 
av 

and (4a) with at z = 0, and subject to appropriate boundary conditions. 

Part II 
The Time-Independent Problem 

The general features and the co-ordinate system of the time- 

independent problem are the same as for the time-dependent problem. The 

governing differential equations are the steady, laminar boundary layer 

equati0n.s arrived at under a set of assumptions similar to those for 

the time-dependent case. 
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Governing Differential Equations and Boundary Conditions 

The steady state problem is described mathematically by the 

following differential equations and boundary conditions: 

Governing Differential Equations. 

Momentum Equation in the axial direction 

av 
V 2 + vz avZ 

r ar 
-= _ - 
az 

Continuity Equation 

V 
x4 

avr avz 
r r+jy=o 

where 

(14) 

(15) 

V =v r r (r, z) is the radial component of the steady 

state velocity, 

V =v Z z (r, z) is the axial component of the steady 

state velocity, 

and p = p (z) is the steady state pressure. 

The subscript 's' denoting steady state values of vr, vz and p 

in the time-independent problem has been omitted for brevity of notation. 

Boundary Conditions 

1. At r = 0: for z 2 0 

For an axially symmetric flow 

vr (0, z) = 0 

avZ 
ar (0, z) = 

0 

(16) 
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2. At r = R: for z 1 0 

For no slip at a stationary solid boundary 

vz (R, z) = 0 (17a) 

and for no mass transfer through a 

non-porous boundary 

vr (R, 2) = 0 (17b) 

3a. A-t z = 0: forO(r(R1 

vr (r, 0) = 0 

o)=2u1 l- 5 
2 

vz (r, 
i 01 1 

(18a) 

where U 1 is the average axial velocity 

in the inner jet pipe. 

3b. Atz=O: forRl< rzR 

v+. (r, 0) = 0 I 

vz (r, 

(18b) 
1 
B 

where U 2 is the average axial velocity in 

the annular region surrounding the inner pipe, 

R, 
l- f 

cc= 
R 

log, y 
1 

and 
rRl 2 

f3=1-a+ E- .m 1 

Equations (14) and (15) suffer the same limitation as Equations (3) 

and (4), i.e., they may be used throughout the flow region, except at 

1 the centerline where indeterminacy occurs in the terms involving ; as 
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seen from the boundary conditions (16) and (17b). It is therefore 

necessary to find versions of Equations (14) and (15) which apply for 

r= 0. 

Differential Equations at the Centerline. The centerline 

differential equations are obtained by using L'Hospital's rule for the 

indeterminate terms ' 
av 

r $ in Equation (14) and r vT in Equation (15). 

In the limit as PO, using L'Hospital's rule, these indeterminate terms 

may be replaced by their corresponding determinate forms derived in 

Equations (9) and (10). The differential equations (14) and (15) 

thus have the following form at r = 0 

avZ 122 
a2v v Z 

z az - =-i- dz + 2v gr- 

avr avz 
2K+ az - =o 

(14a) 

(15a) 

Thus, the steady state problem of mixing of coaxial confined jets has 

been represented as a boundary value problem described by the 

differential equations (14) and (15) (together with their modified 

forms (14a) and (15a) for the centerline), subject to the boundary 

conditions (16), (17a), (lib), (18a) and (18b). 

As was the case for the time-dependent problem, it is found that 

the steady problem also involves determination of three unknowns v 
r' 

V Z and p with only two equations available. The additional equation 

necessary for a unique solution is again obtained from a similar physical 

constraint. 

Equation of Constraint 

The total mass flow rate across any cross-section in the flow field 
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is independent of the axial position. The mathematical statement of 

this constraint is obtained by a similar procedure as for Equation (13) 

and is given by the integral form of the continuity equation 

R. av 
r*dr=O 

-0 
(19) 

Equations (lb), (15) and (19) (together with Equations (14a) 

and (15a) for the centerline), constitute a system of three equations 

in three unknowns which may then be uniquely determined. 

The details of the procedure for obtaining the flow pattern are 

given in the next chapter. The time-independent problem is solved 

first. Its solution supplies the necessary initial and boundary 

conditions for the time-dependent problem which is to be solved 

subsequently. 
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CHAPTER III 
SOLUTION BY FINITE DIFFERENCES 

The non-linear partial differential equations describing the flow 

problem are solved numerically by the method of finite differences. A 

network of discrete points is superimposed on the r-z-t space-time 

system. The discrete configuration of the problem and the co-ordinate 

system are shown in Figure 2. 

The differential equations, initial conditions and boundary 

conditions of the problem are replaced by their corresponding finite 

difference forms. Questions now arise regarding the finite difference 

forms and the numerical stability criterion to be used. 

Derivatives in Finite Difference Form 

Three basic forms are available for finite difference approximations 

to continuous derivatives, namely: forward, backward and central 

differences. Using the discrete subscript system shown in Figure 2, 

the difference approximations may be given as 

Forward Difference 

a = 'm+l,n,k - 'm,n,k 
ax 

m,n ,k 
Ax 

Backward Difference 

fi = 'm,n,k - 'm-l,n,k 
ax 

m,n,k 
Ax 

Central Difference 

9 = 'm+l,n,k - 'm-l,n,k 
ax 

ma& 
2Ax 

(20) 

(21) 

(22) 

These are obtained by expressing 4 in a Taylor's series and assuming 
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tilii 

1 I 
I 

FIGURE 2. DISCRETIZED PROBLEM CONFIGURATION AND SUBSCRIPT SYSTEM 



boundedness of 

approximation, 

Hence, its use 

the higher derivatives. The central difference 

Equation (22), involves the smallest amount of error. 

is desired so far as possible. 

Criteria for Numerical Stability, Consistency and Convergence 

In order that the obtained solution of the finite difference 

equations be meaningful, it is necessary to ensure consistency, stability 

and convergence of the numerical computation scheme used. Definition 

of these terms are included in Appendix B. 

It is known from Lax's equivalence theorem 
40 

that, for a properly 

posed initial value problem, the necessary and sufficient conditions for 

consistency and stability are also the necessary and sufficient 

conditions for convergence. Hence, it is enough to ensure consistency 

and numerical stability of the difference equations. Convergence will 

then be implied. 

Consistency is determined by simply examining the truncation error 

of the difference equations. This is carried out in Appendix C. 

In the present work, stability is investigated using the criterion 

developed by Karplus 39 based on an electric circuit theory approach. 

This criterion, very simple and straightforward to apply, yields 

stability conditions identical to those obtained with the more familiar 

stability criteria of Hildebrand 43 43 and von Neuman . The statement 

of Karplus' criterion and its chief merits are included in Appendix D. 

A computational scheme is explicit, semi-explicit, or implicit, 

depending on the finite difference approximate forms used for the various 

terms in a partial differential equation. For explicit schemes, the 

permissible step sizes are usually limited by numerical stability 

requirements. Hence, carrying the solution up to reasonable values of 
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the independent variables requires large amount of computer time, 

particularly when more than one of the independent variables are 

unbounded. 

Several implicit schemes have been developed which are stable 

regardless of the step sizes used. Since usually an iterative pro- 

cedure is used, greater accuracy is achievable. However, they are 

generally more complex to program and call for greater computational 

effort than do explicit schemes. In implicit schemes, the number of 

points at which computations are needed is reduced, but the number of 

computations at each point increases. Hence, the total time required 

by the problem is still considerable. Further, although stability 

may not restrict the step sizes, other physical considerations (like 

accuracy and resolution desired) may often do so. Then, the computer 

time required by implicit schemes may make their use prohibitive 44 . 

In the present work, an all-explicit scheme is used. All three 

difference approximations and their various combinations are 

investigated for use in the governing differential equations. Finally, 

that combination is selected for use which permits an explicit scheme 

and satisfies the appropriate stability criteria. 

Part I 
The Time-Independent Problem 

Finite Difference Equations and Stability Conditions 

Momentum Equation. The following three schemes are investigated: 

1. 

2. 

3. 

Finite Difference Form For 
r-derivatives z-derivatives 

Central Central 

Central Backward 

Central Forward 
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It is assumed that the axial velocity is non-negative in the flow 

field considered. 

Application of Karplus' stability criteria reveals that scheme 1 

above is implicit and always unstable. The second scheme is semi- 

explicit and always unstable; the resulting finite difference equations 

are transcendental. Scheme 3 leads to linear explicit finite difference 

equations that are stable under certain realizable conditions. Therefore, 

scheme 3 is found appropriate for solving Equation (14). 

Thus, using central differences for the r-derivatives 

and forward differences for the z-derivatives, 

Equation (14) is written at the point (m,n) in the following finite 

difference form 

v,(m,n) 
vz(m+l,n)2;;z(m-l,n)]+ vz(m,n)vz(m4+1) ;rz(myn)] 

vz(m+l,n) - 2 vz(m,n) + vz(m-14) 

cArI I 

V +- 
vz(m+l,n) - vz(m-14) 

r(m) 2Ar 1 (23) 

Solving explicitly for vz(m,n+l), Equation (23) yields 

vz(m,n+l) = vz(m,n) 

AZ 
+ vz(m,n) 

I 

-1 IilL P c 1 dz n 

+v 
[ 

vz(m+l,n) - 2 vz(m,n) + vz(m-1,n) 

CArI 1 + I V 
- - vr(m,n) r(m) I[ 

Vz(m+l,n) - vz(m-1,n) 

2Ar 1 
(24) 

The conditions for stability of Equation (24) are obtained by 
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employing Karplus' method. (Derivation of these stability conditions 

is contained in Appendix E.) 

a) If vr(m,n) c 0, 

the scheme is stable if 

AZ < 
vz(m,n) 

2v 
(h-j2 (25) 

where Ar is not limited from stability considerations, and is selected 

by considering the physical problem. 

b) If v,(m,n 

then the conditions 

1 ’ 0, 

of stability are 

Ar < 2v 
vr(m,n) 

and 

Az < 
vz(m,n) 

2v 
(Ar)2 

(26) 

(27) 

Momentum Equation at the Centerline, Equation(14)becomes 

indeterminate at the centerline, i.e., at m = 1, SO does its correspond- 

ing finite difference form given by Equation (23). Therefore, it is 

necessary to replace Equation (lba) by a finite difference form which 

is valid at m = 1. Using central difference approximations for the r- 

derivatives and forward difference approximations for the z-derivatives, 

Equation (14a) may be written as 
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Here m = 1, so that the point corresponding to (m - 1) is not within 

the flow field considered. However, under the assumption of axial 

symmetry, the value of the axial velocity at (m-1,n) may be replaced 

by its value at (m+l,n). 

Therefore, Equation (28) becomes 

vzh,n) 
I- vz(m,n+l) - vz(m,n)-' 

I AZ 1 

1r* =-- 
Idz n 1 

?vz(m+l,n) 
+ 4Vl 

- vz(m,n)7 

(Arl2 
I 

P t 1 

where m = 1. 

Solving explicitly for vz(m,n+l), Equation (29) yields 

vz(m,n+l) = vz(m,n) 

4v 
rvz(m+l,n) 

I 

(29) 

(30) 

where m = 1. 

The stability conditions for this equation are derived in 

Appendix E. 

Thus, Equation (30) is stable if, for m = 1, 

AZ < 
vzh,n) 

4v (Ar)2 (31) 

where stability imposes no restriction on the size of Ar. 

To ensure stability of the scheme throughout the flow field, 

conditions (26) and (27) together with (31) for m = 1 must be satisfied 

at each point of the region. Thus , if uniform step sizes are to be 

used, condition (26) must hold for the absolute maximum of. all positive 
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vr(m,n) for all m,n (except m = l), condition (27) for the absolute 

minimum vz(m,n) for all m,n (except m = 1) and (31) must be true for 

minimum vz(m,n) for m = 1 and for all n. If variable step sizes are 

to be used, then 

only locally. 

It is noted 

restrictive than 

it is enough to satisfy these stability conditions 

that for a given n, condition (31) is apparently more 

condition (27). Recalling that m = 1 in (31) and that 

at given n, v z is maximum at m = 1, the following inequality is claimed: 

vz(l,n) > 2 vZ(m,n)l 
[ jmin (32) 

Hence, at each n, it is enough to satisfy conditions (26) and (27), 

and then (31) will be automatically satisfied because of inequality (32). 

Attention is here called to one other point. The pressure gradient 

term appearing in Equations (14) and (14a) does not enter the stability 

conditions. Is the stability of the momentum equation independent of 

this term or is it necessary to devise some means of taking this term 

into account? The question may be answered by recalling that the 

momentum equation is used to compute vz(m,n+l) by an explicit scheme. 

The values of all quantities, other than vz(m,n+l), appearing in this 

equation are available at this stage (either specified or computed prior 

to this stage). In a-c&- particular,! dz, appearing in Equation (23) and 
.'n 

(29) is a known quantity. A term that is specified or computed 

previously using a stable scheme cannot contribute to instability. 

Continuity Equation. After the axial velocities vz(m,n+l) have 

been determined at a given (n+l) for all m using the momentum equation, 

the radial velocities vr(m,n+l) are computed with the help of the 

continuity equation (15). Since no axial derivative of radial velocities 
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appear, Equation (15) must be written at the section (n+l) in order to 

advance downstream the information on v r' An explicit computation 

scheme can then permit only backward difference approximations for any 

other z-derivatives involved. The r-derivatives are approximated by 

central differences, thus retaining the scheme used for r-derivatives in 

the momentum equation. However, due to the axial symmetry of the problem, 

no information is obtainable at m=2 when the equation is written for 

m=l; the computations will yield vr not for every m but for every other 

m only. Hence, some modification of the approximation scheme is 

necessary in order to determine v for all m. The other alternative r 

would be to use some implicit computation scheme. The former approach 

is adopted in the following. 

The continuity equation is written in its finite difference form, 

at the fictitious points (m-1/2, n+l), instead of at (m,n+l), using 

the following approximations: 

vr(m-1/2,n+l) 
vr(m,n+l) + vr(m-l,n+l) 

1. 2 
r(m-l/2) = r(m) + r(m-1) 

2 

i.e., 

vr(m-1/2,n+l) vr(m,n+l) + vr(m-l,n+l) 

r(m-l/2) = r(m) + r(m-1) 

2. 
avr vr(m,n+l)- vr(m-l,n+l) 

ar 
= 

m-1/2 ,n+l 2& 
2 

i.e., 

avr vr(m,n+l) - vr(m-l,n+l) 

ar 
= 

m-1/2,n+l Ar 

(33) 

(34) 

(35) 

(36) 
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- 

avz avz 
avz az 

3- az 
= m,n+l 

+az m-l,n+l 
2 (37) 

m-1/2,n+l 

Using backward difference approximations for the z-derivatives on the 

right-hand side, Equation (37) leads to: 

avZ 
az m-1/2,n+l 

vz(m,n+l) - vz(m,n) + vz(m-l,n+l) - vz(m-1,n) 
= 

2Az (38) 

Using the above approximations, the continuity equation (15) has 

the following finite difference form 

vr(m,n+l) + vr(m-l,n+l) 

r(m) + r(m-1) 
+ 

v--(m,n+l) - v-(m-l,n+l) 

Or 

+ 
vz(m,n+l) - vz(m,n) + vz(m-l,n+l) - vz(m-1,n) 

2Az 

= 0 

Now, 

r(m) = (m-l) Ar 

r(m-1) = (m-2) Ar 

Therefore, Equation (39) may be written as 

vr(m,n+l) + vr(m-l,n+l) vr(m,n+l) - vr(m-l,n+l) 

(2-m-3) Ar 
+ 

ar 

(39) 

(40) 

vz(m,n+l) - vz(m,n) + vz(m-l,n+l) - vz(m-1,n) 
+ 

2Az 

= 0 (41) 
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On simplifying the first two terms, Equation (41) becomes 

/_ m-l’ 2 [ m-21 2 
i ZW-3~ 

I - vr(m,n+l) - L 2m-3.1 z vr(m-l,n+l) 
Ar 

+ 
vz(m,n+l - vz(m,n) + vz(m-l,n+l) - vz(m-1,n) 

2Az 

= 0 (42) 

(43) 

It is shown in Appendix E that Equation (43) is unconditionally 

stable. 

Continuity Equation at the Centerline, The radial velocity 

vr(m,n+l) at m = 1 is available from the boundary condition at the 

centerline. Hence, the continuity equation never need be written at 

m = 1, so that the singular nature of the term 
vr(m,n+l) 

r(m) 
at m = 1 is 

never encountered. 

Equation (lga), the continuity equation for m = 1, is, therefore, 

given no further consideration. 

Boundary Conditions. The boundary conditions, given by Equations 

(16), (17a), (ln), (18a) and (18b),,have the following finite difference 

representations. 
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1. At m = 1, for all n > 0: 

v,(l,n) = 0 

vZ(2,n) = vz(O,n) 

2. At m = M+J, for all n > 0 

vr(M+l,n) = 0 

vZ(M+l,n) = 0 

3a. At n = 1, R1 for 1 5 m < z 

vr(m,l) = 0 

vz(m,l) = 2Ul [1-[?]'I 

R 
3b. At n = 1, for ar - -& < m < M+l 

(44) 

(45) 

(46) 

vr(m,l) = 0 

(47) 

vz(m,l) = 2U2 L 
B 

Here, Ul, U2, =, and g are as defined earlier in (18a) and (18b). 

Thus ) for each n, Equations (24) and (43) for m=2,3,...,M, and 

Equation(3U)for m = 1, together with the above boundary conditions, 

comprise a system of (2M+2) linear explicit equations in the (2M+3) 

unknowns v,(l,n), vr(2,n), . . . . vr(M,n), vr(M+l,n); 

c 1 L& vz(l,n), vz(2,n), . . . . vZ(M,n), vZ(M+l,n); and dz . 
n 
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Numerical stability of the system is ensured by satisfying conditions 

(26) and (27) for m=2,3,...,M-l,M and for all n. 

Equation: (19) p rovides the additional equation necessary for a 

unique solution of the system. 

Equation of Constraint. The equation of constraint is recalled 

here for ready reference. 

For any fixed z 

R 

/ 

avZ rFdr=O 

0 

(19) 

To represent this in finite difference form, the total interval 

of integration 0 L r (R is divided into M equal sub-intervals. The 

width Ar of each of these sub-intervals is small enough so that the 
av 

factor az z in the integrand of (19) may be considered to be a constant 

over each sub-interval. This constant may be taken as the value of 
av 
z at the midpoint of the respective sub-interval. az 

Equation (23) may be written as: 

For any fixed n 

(M-1)Ar 

+ [i 1 r dr + 

(M-2)Ar (m-31% 

= 0 (48) 
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- 

avz 
The value of z at the midpoint of a sub-interval may be obtained as 

the arithmetic mean of the values at the endpoints of that sub-interval. 

Hence, after performing the indicated integrations, Equation (48) 

becomes 

r=O 

l(M-1)2 - (M-2)21 (&.)2 1 av 1 

+ 
2 (M-2)Ar + 5 e (M-l)Ar 1 

+ [M2 - (M-l)2] (&)2 
av 1 z 

I 
1 

2 (M-1)Ar + 2 ZT MAr j 

= 0 (49) 

Now, from the wall boundary condition (45) 

vZ(M+l,n) = 0 for al& n ) 0 

the following condition is obtained: 

av av 
-2. z (50) az = az (M+l,n) 

= 0 for all n )O 
MAr 

Using (50) in Equation (49), dividing through by the non-zero 

constant factor (Ar)2, Equation (49) becomes, after SimPlication 

avZ avz 

+l az +2 az 
+ 

avZ 

(3,n) *" 
+ (M--l) - 

(14) (2,n) az (Ma) 

= 0 (51) 
37 



i.e., 

(52) 

This is the finite difference form of Equation (19). 

. . avZ Substltutlng for az (m n) from the appropriate momentum equation 
, 

yields 

+ 
vz(m+l,n) - vz(m-1,n) 

= 0 (53) 

The term dz c 1 32 is the only unknown appearing in the above equation and 
n 

may, therefore, be evaluated as follows: 

11 vZ(2,n) - vz(l,n) 

= T vz(l,n) (Ar>' 
Ii 

M 

+ 
c 

(m-1) 
vzh,n) 

m=2 

vz(m+l,n) - 2vz(m,n) + vz(m-1,n) 
V 

CArI -1 

+ V 
- - vr(m,n) 
r(m) I[ 

vz(m+l,n) - vz(m-1,n) 

2Ar 1 
(54) 

from which dz [ 1 GFI can be explicitly solved for. 
n 

As we noted earlier, the equation of constraint is the integral 

form of the continuity equation obtainable by integrating the continuity 
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equation (15) over a cross-section. Since integration and summation are 

corresponding processes in the continuous and the discrete form, Equation 

(52) must be obtainable by summation of Equation (43) for all values of 

m appearing in the problem. Verification of this statement is given 

in Appendix F. 

Part II 
The Time-Dependent Problem 

Finite Difference Equations and Stability Conditions ~ -. -.i - ---- _-_--__- .~- --~ 

Momentum Equation, The time-dependent momentum equation is 

parabolic in the t co-ordinate, as well as in the z co-ordinate. Central 

difference approximations for the t derivatives, and/or for the z 

derivatives in Equation (3) will, therefore, result in an implicit 

scheme that is always unstable. 

With the aim of setting up an explicit scheme of computation, the 

following three schemes are investigated: 

Finite Difference Form For 

r-derivatives z-derivatives t-derivatives 

1. Central Forward Forward 

2. Central Backward Forward 

3. Central Forward Backward 

Scheme 1 above does not yield an explicit solution for the flow 

variables for the complete domain of investigation. For, each step 

advanced in the t direction (or z direction) reduces the possible 

number of steps in the z direction (or t direction) by one, if explicit 

methods are used. An admissible solution, using an implicit scheme, 
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requires prior knowledge of the downstream boundary conditions, or of 

the terminal time conditions. In general, these may not be prescribed. 

In scheme 2, the equation of constraint is satisfied as an identity. 

2P No information is obtainable for az . A different constraint will then 

be necessary for a unique solution. 

However, scheme 3 presents no such difficulties. Therefore, 

Equation (3) is written at the point (m,n,k+l) using 

central difference approximations for the r-derivatives, 

forward difference approximations for the z-derivatives, 

and backward difference approximations for the t-derivatives, 

resulting in the finite difference equation 

vz(m,n,k+l) - vz(m,n,k) 
At 

rvz(m+l,n,k+l) 
+ vr(m,n,k+l) 

- vz(m-l,n,k+l) 

I 2Ar 1 
+ vz(m,n,k+l) 

Tvz(m,n+l,k+l) 
/ 

- vz(m,n,k+l)' 

I AZ i 

1-a =-- 
P 1 1 dz (n,k+l) 

Iv,(m+l,n,k+l) 
+ v' 

- 2vz(m,n,k+l) + vz(m-l,n,k+l) 

1 (Ar)' 
-_I~ 1 

r 

+u 
i vz(m+l,n,k+l) - vz(m-l,n,k+l) .I 

r(m) I 2Ar i 
(55) 

40 



Then, vs(m,n+l,k+l) is given explicitly by the following expression 

vs(m,n+l,k+l) = vs(m,n,k+l) + 

r 
-L 2.E 

P [ 1 a' (n,k+l) I 
I 
, 

[ 

1 

+ v 
vz(m+l,n,k+l) - 2vz(m,n,k+l) + vz(m-l.n,k+l) 1 

(Ar)' 1 i 
i 
I 

AZ V vz(m,n,k+l) +- r(m) [ 

vz(m+l,n,k+l) - vz(m-l,n,k+l) 1 I 
2Ar 

i 

i 
TV (m+l,n,k+l) - vz(m-l,n,k+l) 

- vr(m,n,k+l) I ' 
I 2Ar 

1 1 

(56) 

The stability conditions for Equation (56) are derived in Appendix 

E. It is shown that 

a) For vr(m,n,k+l) < 0, 

Equation (56) is stable if 

AZ < 
vz(m,n,k+l) 

2 1 
m+xc 

(57) 

where Ar and At are ascertained from physical considerations of the pro- 

blem. Stability imposes no limitation on their magnitude. 

b) For vr(m,n,k+l) > 0, 

the conditions of stability are. 

2v 
Ar < vr(m,n,k+l) (58) 

41 



and 

vz(m,n,k+l) 

Az< 2v 1 
m+z 

(59) 

where At is still free from stability restrictions. 

When the above conditions are satisfied, Equation (56) represents 

a stable explicit expression for computation of vz(m,n+l,k+l) for 

m=2,3 ,...,M-l,M. This equation, however, is indeterminate at m = 1. 

The finite difference form of Equation (3a) for the centerline, is, 

therefore, now derived. 

Momentum Equation at the Centerline. The differencing scheme 

used is the same as for Equation (3). The following finite difference 

form is obtained when Equation (3a) is written at (m,n,k+l) 

vz(m,n,k+l) - vz(m,n,k) vz(m,n+l,k+l) - vZ(m,n,k+l) 

At + vz(m,n,k+l) 
AZ 1 

1* =-- 
P [ 1 a' (n,k+l) 

+ 2v 

vz(m+l,n,k+l) - 2vz(m,n,k+l) + vz(m-l,n,k+l) 

(Ar)’ 1 (60) 

where m = 1. 

It is noted that the point (m-l,n,k+l) lies outside the region of 

computation. Under the assumption of axial symmetry, therefore, 

for m = 1 

vz(m+l,n,k+l) = vZ(m-l,n,k+l) (61) 
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Therefore, Equation (60) becomes 

vz(m,n,k+l) - vz(m,n,k) 
+ v (m,n,k+l) 

-vz(m,n+l,k+l) - vz(m,n,k+l)i 

At Z I. AZ I 

+ 4v 
fvz(m+l,n,k+l) - vz(m,n,k+l) 

cArI 1 62) 

Solving explicitly for vz(m,n+l,k+l), this gives 

vz(m,n+l,k+l) = vz(m,n,k+l) 

-132 P [ 1 az (n,k+l) 

where m = 1. 

It is shown in Appendix E that Equat ion (63) is stable if 

AZ i 

+ vz(m,n,k+l) vz(m+l,n,k+l) - vz(m,n,k+l)'$ 
'i 

I- 
vs(m,n,k+l) - vz(m,n,k) 

At i 

(63) 
\ 

AZ < 
vz (m ,n ,k+l ) 

4v 1 
m+z 

(64) 

where Ar and At are not limited by stability considerations. 

Again, to ensure stability throughout the entire region of computation, 

it is necessary to satisfy condition (64) for m = 1 and condition (59) 

for m=2,3,..., M, togehter with condition (58) for m=2,3,...,M. If 
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variable step sizes are not desired, the values of Ar, AZ and At must 

be determined from the condition for m corresponding to the worst case. 

Therefore, condition (58) must be satisfied for the absolute maximum 

of vr(m,n,k+l), and conditions (59) and (64) for the absolute minimum 

of vz(m,n,k+l). As for the time-independent problem, condition (59) 

is claimed to be more restrictive than condition (64). Therefore, 

conditions (58) and (59) are the stability conditions for the time- 

dependent momentum equation. 

Also, the stability conditions are independent of the pressure 

gradient :*- 
'maz"(n,k+l)' 

Continuity Equation. The continuity equation contains no terms 

involving a time derivative. Therefore, to advance information forward 

in time and in the downstream direction, Equation (4) must be written 

at (m-1/2,n+l,k+l). Central differences are used to replace r-derivatives 

and backward differencesto replace z-derivatives; no time differences 

appear. The following approximations, similar to those for the 

corresponding terms in time-independent equation (15) are used: 

1. 
vr(m-1/2,n+l,k+l) vr(m,n+l,k+l) + vr(m-l,n+l,k+l) 

r(m-l/2) = r(m) + r(m-1) (65) 

Using the relation (ho), this becomes 

vr(m-1/2,n+l,k+l) vr(m,n+l,k+l) + vr(m-l,n+l,k+l) 

r(m-l/2) = - (66) (Zm-3) r 

avr 
2. - 

vr(m,n+l,k+l) - vr(m-l,n+l,k+l) 
= 

ar (m-1/2,n+l,k+l) Ar 

(67) 
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,-v (m,n+l,k+l) - vz(m,n,k+l) : 
li z =-- av Z 2 1. AZ j 

3. - 
az (m-1/2,n+l,k+l) [vz(m-l,n+l,k+l) - vz(m-l,n,k+l)l 

I AZ J 

(68) 
Then, Equation (4) has the following finite difference form at the point 

(m-1/2 ,n+l,k+l) 

vr(m,n+l,k+l) + vr(m-l,n+l,k+l) q(m,n+l,k+l) - vr(m-l,n+l,k+l) 

(2m-3)Ar 
+ 

Ar 

+ 
vz(m,n+l,k+l) - vz(m,n,k+l) + vz(m-l,n+l,k+l) - vz(m-l,n,k+l) 

2Az 

=o (69) 

Using expression (40) and simplifying,Equation (69) yields an 

explicit expression for vr(m,n+l,k+l) as follows 

vr(m,n+l,k+l) = fm-27 I-! v (m-l,n+l,k+l) lm-1) r 

I 
(2m-3)Ar 

vz(m,n+l,k+l) - vz(m,n,k+l) 

- 4(m-1)Az ( 

I z 
+ v (m-l,n+l,k+l) - vz(m-l,n,k+l) (70) 

The above equation is valid for m=2,3,...,M-1,M. 

The continuity equation for the time-dependent problem is of the 

same form as for the time-independent problem. Stability considerations 

for Equation (70) are the same as for Equation (43). Therefore 

Equation (70) is also unconditionally stable. 
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Continuity Equation at the Centerline. Since vr(m,n+l,k+l) at 

m=l is known from the centerline boundary condition (61, the continuity 

equation is not used at m=l. Hence, Equation (ha) is given no further 

consideration. 

Initial Conditions 

At k = 1, for 15 m (M+l and n 2 1: 

vr(m,n,l) = vr (m,n) + Gvr(m,n,l) 
S 

(71) 
and vz(m,n,l) = vz (m,n) + 6vz(m,n,l) 

S 

where v and v r Z are obtained from the solution of the time-independent 
S S 

problem. 

Boundary Conditions 

1. At m = 1, for n 2 1 and k > 1: 

vr(l,n,k) = 0 

and vz(2,n,k) = vz(O,n,k) 

(72) 

2. At m = M+l, for n 2 1 and k>l: 

vr(M*l,n,k) = 0 

(73) 
and vz(M+l,n,k) = 0 

3. At n = 1, for l(m(M+l, and k>l: 

vr(m,l,k) = vr (m,l) + Gvr(m,l,k) 
S 

(74) 
and vz(m,l,k) = vz (m,l) + Gvz(m,l,k) 

S 
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Equation of Constraint. Following a procedure similar to that for 

Equation (lg), the finite difference form of Equation (13) is obtained 

as the following 

1 vs(l,ntl,k+l) - vz(l,n,k+l) 

4 Ai I 

+ 
vs(m,n+l,k+l) - vz(m,n,k+l) 

I 
= 

AZ 0 (75) 
m=2 

Substituting for the bracketed quantities from the appropriate 

momentum equations, i.e., Equation (62) for m=l and Equation (55) for 

m=2,3 ,...,M-l,M, Equation (75) becomes 

$v (1: k+l) z " 
( + 4v 

vz(2,n,k+l) - vz(l,n,k+l) 

(Ar)2 

vz(l,n,k+l) - vz(l,n,k) 

\ At / 

F 
-132 [ 1 ' a' (n,k+l) 

M 

c 

(m-l) ( + " [ 

vz(m+l,n,k+l) - 2vz(m,n,k+l) + vz(m-l,n,k+l) 

(h-J2 1 t vzb,n,k+l) 
m=2 + v - vr(m,n,k+l) 

I[ 

vz(m+l,n,k+l) - vz(m-l,n,k+l) 

r(m) 2Ar 

vz(m,n,k+l) - vZ(m,n,k) 

\ At 

= 0 (76) 

I --- 



All other quantities being known, c 1 a 
az (n,k+l) 

may be explicitly evaluated 

using the above equation. Thus 

M 

t v (1 ,' k+l) + z " c (n,k+l) 
m=2 

1 1 
= T vz(l,n,k+l) 

b-1 1 
vz(m,n,k+l) 

4v 

i- 

vz(2,n,k+l) - vz(l,n,k+l) 

(Ar)’ I 
vz(l,n,k+l) - vz(l,n,k+l) 

At I 

V 1 

- v,(m, 

I- 
vzh,n,k+l) - vz(m,n,k) 

At 

(77) 
Thus the problem is represented in finite difference form by 

Equation (63) for m=l, Equations (561, (70) and (77) for m=2,3,...,M-1, 

M, together with the initial conditions (71) and the boundary conditions 

(72), (73) and (74). 

Sequence of Computations 

Solution of the time-dependent problem requires the results of the 

time-independent problem, in order to obtain the initial and boundary 
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conditions. The procedure for solution of both problems is outlined 

by the following sequence of operations. 

The Time-Independent Problem. 

1. For a set of parameters R1, R, U1 and U2, suitable values of 

Ar and AZ are determined such that the stability conditions (26) and (27) 

are satisfied.* 

2. For n = 1, vz(m,n) and vr(m,n) are determined from the 

boundary conditions (46) and (47) for allm=1,2,...,M,M+l. 

3. 
f&J 
LdzA is computed using Equation (54). 

n 
4. vz(m,n+l) is computed using Equation (30) for m=l, Equation 

(24) for m=2,3,.. .,M-l,M and the boundary condition (45) for m=M+l. 

5. vr(m,n+l) is computed using the boundary condition (44) for 

m=l, Equation (54) for m=2,3,... ,M-l,M and the boundary condition (45) 

for m=M+l. 

6. If uniform mesh sizes are not necessary to maintain,Ar and 

AZ are redetermined from the stability conditions (26) and (27) using 

the most recent values of vz and v r computed in steps 4 and 5 above. 

7. The value of n is incremented by unity and steps 3 through 

6 are repeated until the flow field is computed for the desired 

value of z = n.Az. 

The Time-Dependent Problem. 

1. From the parameters A and f, the value of At is determined 

based on the desired resolution of the problem. 

* The stability limit on AZ is more restrictive for the time-dependent 
problem than for the time-independent problem. Hence, the value 
of AZ used in obtaining the initial conditions is the same as that 
to be used later in the time-dependent problem. 
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2. Suitable values of Ar and AZ are determined such that the 

stability conditions (58) and (59) are satisfied. 

3. For k=l, vz(m,n,k) and vr(m,n,k) are determined from the 

boundary condition (74) for n=l and from the initial condition (71) 

for all n > 1. 

4. For n=l, vz(m,n,k+l) and vr(m,n,k+l) are determined from the 

boundary conditions (74). 

5. 
:&I; 

' aZ'(n,k+l) 
is computed using Equation (77). 

6. vz(m,n+l,k+l) is computed using Equation (63) for m=l, Equation 

(56) for m=2,3 ,...,M-l,M, and the boundary condition (73) for m=M+l. 

7. vr(m,n+l,k+l) is computed using the boundary condition (72) 

for m=l, Equation (70) for m=2,3 ,...,M-l,M, and the boundary condition 

(73) for m=M+l. 

8. If uniform mesh sizes are not necessary, Ar and AZ are re- 

determined from the stability conditions using the most recent values 

of vz and v r computed in steps 6 and 7 above. 

9. The value of n is incremented by unity and steps 5 through 

8 are repeated until the desired axial distance has been covered. 

10. The value of k is incremented by unity and steps 4 through 

9 are repeated until the flow has been computed for the desired value 

of t = k.At. 
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CHAPTER IV 
FUZSULTS AND DISCUSSIONS 

On The Validity of Results 

The significance of a mathematical solution of any physical problem 

lies in the validity of the results obtained. Their acceptance requires 

ensuring certain facts, the most important among which are briefly 

discussed here. 

First of all, the mathematical model considered must be as correct 

a representation of the physical problem as possible. The other require- 

ments forvalidity having been satisfied, the accuracy of the results 

will then depend on how exactly this model describes the actual 

physical situation. Secondly, if the solution is accomplished by 

numerical techniques, it becomes further complicated by problems of 

consistency, stability and convergence. Finite difference methods 

determine the problem variables at discrete points instead of in a 

continuous space. For the solution of the lldiscretized" problem to 

converge to that of the Wcontinuous" problem, the finite difference 

formulation must be consistent with the mathematical problem it 

approximates. Also, the computation scheme must be numerically stable. 

When these requirements are fulfilled, the results of the numerical 

solution may be considered valid, although any confidence in them 

would still require further experimental justification. This may be 

achieved by checking against other available results obtained either 

analytically or experimentally. 

The validity of the results obtained by the method developed in 

the present work is now demonstrated. 

The mathematical model of the flow problem considered is obtained 
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under certain assumptions which are justified in Chapter II. The partial 

differential equations describing this model are approximated by finite 

difference equations which are verified in Appendix C to satisfy the 

consistency requirements. The numerical stability of the computation 

scheme is confirmed by satisfying Karplus' stability conditions for the 

difference equations (Appendix E) in the entire region of interest. Con- 

vergence of the obtained solution to the true solution is then assured 

under the hypothesis of Lax's equivalence theorem for initial-boundary 

value problems. 

In particular, the method of solution herein developed is used to 

investigate the time response of the laminar mixing and developing region 

of a confined jet to velocity fluctuations superimposed on the entrance 

conditions. To the author's best knowledge, this specific application 

has not been, as yet, dealt with by others, either analytically or 

experimentally, so that evaluation of the results by direct comparison 

is not possible. An indirect approach is therefore, adopted to assess 

reliance on the results. 

Several analytical solutions, both exact as well as approximate, 

as also experimental results are available for the time-dependent 

boundary layer equations as applied to specific flows with rectangular 

or curvilinear geometry. Numerical solutions are also available for 

the impulsively started wedge flow and oscillations in Blasius flow 38 . 

However, for laminar, incompressible flows with cylindrical geometry, 

solutions are available only for cases where the dimension in the 

direction of the main flow is assumed to extend to infinity. Under 

this assumption, the flow is taken to be independent of this dimension 

so that the problem involves variations only in the transverse direction 
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and in time. 

The non-steady Navier Stokes equations have been solved 

(analytical1 y and numerically) by several investigators for various 

flow problems. .Direct comparison of results of the present investi- 

gation with these solutions can yield any meaningful conclusions only 

if the obtained solutions of the boundary layer equations themselves 

can be shown to be reliable. The comparison would then demonstrate 

the variation between the results obtained for a given flow problem 

modeled mathematically under some differing but permissible assumptions. 

Comparison with experimental results would be necessary to evaluate 

the results obtained by the present method. 

Steady, leminar, incompressible boundary layer flows have been 

investigated (analytically, numerically as well as experimentally) 

for various geometrical configurations and boundary conditions. The 

results of these studies may be directly compared with the results of 

the time-independent problem in this investigation. This provides a 

firm basis for evaluation of the initial conditions of the specific 

flow configuration being presently considered. In particular, velocity 

profiles are obtained for the development region of a porous pipe with 

constant velocity through the wall. The results are compared with 

those obtained by Hornbeck 1 using a numerical scheme that was implicit 

for the radial direction, but explicit for the axial direction. Such 

a scheme is unconditionally stable for all mesh ratios for non-negative 

axial velocities, but involves inversion of an (M x M) matrix for 

computing the axial velocity at the M radial grid points at each axial 

section. The comparison (Figure 3) shows a maximum deviation of 0.8 

per cent for the centerline velocity in the initial region of about 
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4 pipe radii. This deviation reduces, with distance downstream to 

less than O-.3 per cent at about 15 radii. Also, at any axial section, 

the results compare more favorably in regions near the pipe wall, 

than near the axis. Figure 4 shows the behavior of the centerline 

1 -d$ velocity and 
I 1 

with increasing downstream distance. One further 
p .dz 

point that needs mentioning is that the ail-explicit scheme developed 

uses less than seven minutes of computer time to solve for velocity 

fields for an axial distance of upto 74 pipe radii. This includes 

compilation as well as output time. The close agreement obtained 

between the two solutions confirms the quality of the results of the 

time-independent equations. 

The validity of the time-dependent results is assured by solving 

the problem of a pulsating viscous flow superimposed on the steady 

laminar motion of incompressible fluid in a straight pipe of circular 

cross-section. An exact solution of this problem has been obtained 

by Uchida 2 in 1956. Uchida assumed that the steady flow is parallel 

to the pipe axis and has a zero transverse component, so that the 

resulting flow is independent of the axial distance. The unsteady 

Navier Stokes equations governing the flow thus reduce to linear 

parabolic partial differential equations, even though no boundary 

layer assumptions are made. Figure 5 shows the results for an 

oscillating pressure gradient of low frequency (0.024 rad/sec.) super- 

imposed on a steady Poiseuille flow with a Reynolds number of 500. 

Comparison is also made for a higher frequency (0.2166 rad/sec.) of 

the superimposed oscillating pressure gradcent (Figure 6). The close 

agreement of the obtained numerical solutions of Uchida, leads to 

reliance upon the method of solution developed in the present work. 
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The scheme for the complete equations:is checked .out by solving 

for the trivial case of determining the response of a given developing 

flow field to zero variations superimposed on it. The validity of the 

scheme is assured if the flow pattern remains invariant with time, as 

computations progress further in time. In fact, the results showed a 

variation of less thsn 0.01 per cent at the end of twenty time levels 

of calculation. 

Thus, the method developed is assured to yield valid results for 

both the steady as well as the unsteady problems. 

Discussion of Present Results 

The numerical computation scheme developed is employed to determine 

the initially steady flow pattern in the mixing and developing region 

of a laminar circular jet in a confined co-axial flow. The variation 

of this flow in response to a velocity oscillation superimposed on the 

entrance conditions is subsequently studied using the non-steady 

equations. At this stage, several practical difficulties are 

encountered due to the fact that the partial differential equations 

describing the time-dependent problem are parabolic in two independent 

variables. Some of these difficulties are associated, in general, with 

problems in three independent variables, even though they may be 

parabolic in only one 6,7,44 . The finite step sizes being restricted 

by convergence rates, a computer with a very large memory core becomes 

a prime necessity. Unconditionally stable schemes may be devised, but 

the time for solution may easily make their use prohibitive. 

The IBM 7040 digital computer is used for the present numerical 

investigation. Its limited core may not present an insurmountable 

difficulty, since a larger core is easily improvised through the use 
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of auxiliary input-output units. The increase in computer time due to 

this additional input-output process is very small. However the total 

computer time requirement for a single run remains a serious restriction, 

so that only a limited study is carried out. A more complete investigation 

is necessary for drawing general conclusions. The present work provides 

a stable, convergent and efficient method for this investigation. 

The flow configuration of interest involves essentially three 

parameters. 

1. Ratio of jet radius to radius of confining pipe. 

2. Reynolds' numbers at the jet exit for the flows in the jet 

and in the surrounding annular region. 

3. The nature and distribution of the superimposed time-dependent 

velocity variation. 

As mentioned earlier, the limited availability of computer facilities 

forbade a complete parametric study. Consequently, only the following 

set of parameters are investigated: 

Rl = 0.5 in. 
Rl 

R = 1 in. 
-= 0.5 R 

ul = 3.30 ft/sec. 

U 
2 = 2.75 ft/sec. 

U = 3.00 ft/sec. 

R 
el 

= 1650 

ul 

5 = Iis 

R 
el - = 1.18 R 
e2 

60 

R = 1400 
e2 

R = 2900 
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Various forms for the superimposed variations are considered. One 

feature common to them all is that they are confined to the axial 

velocity only and to the axial section where the jet pipe terminates. 

The following particular profiles for the variation are 

investigated: 

Case 1. A step increase of the local axial velocity along a 

circular ring near the jet exit. The magnitude of the step is five 

per cent of the mean flow velocity in the confining pipe. 

Case 2. An impulsive increase of the local axial velocity which 

is then immediately restored to its original value. The location and 

magnitude of the impulse are the same as in (1) above. 

Case 3. A pulsed increase in axial velocity introduced at a 

frequency of 50 cps. The amplitude and location of the pulse are 

the same as in (1) and (2) above. 

Case 4. A sinusoidal time-variation superimposed at the jet 

exit section and having the form 

GvZ(r, t) = A v z (r, 0) cos (2lTf t) 
S 

where A = amplitude factor 

f = frequency (cps) 

Due to practical and economic limitations of the available facility, 

only a limited number of values of A and f could be investigated. 

The values considered are: 

A = amplitude factor f = frequency (cps) 

a) +0.05 for 0 (r < Rl 1 

-0.05 for Rl < r 2 R 
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b)’ a.05 for 0 2 r < Rl 

-0.05 forRl< r 1. R 

50 

cl +0.05 for 0 < r < R 
1 - 

-0.05 for Rl < r 5 R 

100 

The flow parameters listed above are shown experimentally by 

Seider 4 
to correspond to a mixing region that undergoes transition to 

turbulence at an axial distance of about 3 radii of the confining pipe 

downstream of the jet exit. Beyond this region, the results obtained 

from the laminar flow equations would have no physical significance. 

Hence, the investigation is limited to an axial length of about 4 R. 

The results indicate that when the superimposed step change or impulsive 

change is localized to only one point along the radius, the flow merely 

adjusts itself to this change, but shows no abrupt behavior. The 

pulsed increase also shows similar results. 

Figure 7 shows the steady state axial velocity profiles for the 

confined jet mixing configuration considered, before the oscillation of 

Figure 8 is superimposed on the jet exit section. Figures 9 through 

11 show the results for sinusoidal oscillations of the general form 

listed under Case 4 above. The deviation of the axial velocity from 

its steady state value is plotted against the number of cycles of the 

superimposed oscillation, with radius r and downstream distance z as 

parameters. 

Figure 9 shows the results for the oscillation of Case 4a super- 

imposed on the flow entrance. 

At the jet exit, i.e., at z = 0, the s.uperimposed amplitude of the 

oscillation is 0.33 ft/sec. at the centerline. As seen from Figure 9a, 
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at z = ZR, this amplitude decreases to 0.315 ft/sec. at the end of 

the first cycle of the oscillation and further decreases to 0.295 ft/ 

sec. at the end of the second cycle. The amplitude then remains steaay 

at this value of 0.295 ft/sec. for the further cycles investigated. 

At r = R/2, the superimposed amplitude is 0.0078 ft/sec. at 

z = 0. At z = 2R, this amplitude decreases to 0.0059 ft/sec. at the 

ena of the first cycle, it increases to 0.0066 ft/sec. at the end of 

the second cycle, and remains constant beyond. 

At r = 0, and z = 4R, the amplitude of oscillation in the resulting 

flow is 0.2775 ft/sec. for the first cycle. It decreases to 0.26 ft/ 

sec. during the next cycle and remains constant at this value for the 

further cycles investigated. 

Again at r = R/2, at z = 4R the initial amplitude of 0.0078 f-t/ 

sec. decreases to 0.00775 ft/sec. at the end of the first cycle, but 

increases to 0.00825 ft/sec. at the end of the second cycle remaining 

constant at this value for all further cycles observed. 

Since information for this run was obtained for time instants 

correspnding to only the peaks of the oscillation for each cycle, no 

statement may be made regarding the distortion of the wave shape in 

the resulting motion. 

Beyond the first two cycles, the envelope of the wave shape 

consists of a pair of straight lines parallel to the line 6v, = 0. 

At r = 0, these parallel lines are spaced symmetrically about the 

line 6v, = 0 for both axial locations z = 2R and z = 4R. 

At r = R/2, for z = 2R the envelope of the wave is symmetric 

about the line 6v, = 0.00175 f-t/see., while for z = 4R, the line 

of symmetry shifts to 6v, = 0.00125 ft/sec. 
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The frequency of the introduced oscillation is increased to fifty 

cycles per second for the next run. Information for this run, as well 

as for the subsequent run, was printed out at time instants correspond- 

ing to the peaks, as well as to the zeros of the superimposed 

oscillations. The results are presented in Figure 10. The amplitude 

of the resulting wave is almost constant at 0.061 ft/sec. throughout. 

The wave shape is markedly distorted for the initial three or four 

cycles at all the four locations considered. This initial distortion 

is more'pronounced at the centerline than at r = R/2. However, the 

distortion in the wave shape (after it has apparently attained steady 

state) is greater at z = 2R than at z = 4R, the maximum occuring at 

the centerline for z = 2R. 

The envelope of the wave shape oscillates initially, later settling 

down to parallel straight lines. The oscillatory portion of the 

envelope is limited to a smaller initial period for the centerline 

than for r = R/2, the maximum spread occurring at z = 4R. At z = 4R, 

the envelope begins to oscillate not right from the start, but only 

after about the first cycle. Also, the amplitude and frequency are 

higher at the centerline than at r = R/2 being largest at the center- 

line for z = 2R. The steady state is attained faster at r = 0 than 

at r = R/2, and also faster at z = 2R than at z = 4R. The line of 

symmetry for the steady portion of the envelope is, at all locations, 

displaced towards positive 6vz, the shift being larger at r = R/2 

than at the centerline, the maximum occurring at z = 2R and r = R/2. 

The effect of a further increase in the oscillation frequency 

to 100 cycles/second is investigated subsequently. The results are pre- 

sented in Figure 11. For the tenth and the twentieth cycles, for this 
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run, printed information was obtained at twelve instants equally spaced 

over the period of the imposed oscillation. This information confirms 

that the frequency of the resulting oscillation is the same as that of 

the imposed oscillations. 

The amplitude of the resulting wave is again almost constant at 

0.061 ft/sec. throughout. The wave shape is considerably distorted at 

the centerline, the distortion being greater at downstream distance 

z = 2R than at z = 4R. Also, at z = 2R, this distortion occurs over 

the second through the fourth cycles, and again over the eleventh 

through the fourteenth cycles. At z = 4R, these periods of distortion 

shift to the fourth through eighth cycles and to the thirteenth through 

the eighteenth cycles. 

The envelope of the wave shape is oscillatory but is of much 

lower frequency than that of the superimposed oscillation. As in 

the case of superimposed oscillation frequency of 50 cps, the 

amplitude of the envelope oscillation is larger at the centerline than 

at r = R/2. The maximum amplitude occurs on the centerline at z = 2R. 

Also, at z = 2R the envelope oscillation begins after the first cycle 

of the imposed oscillation and at z = 4R, it begins after the initial 

three cycles. 

Without the superimposed oscillation, this flow configuration 

exhibits a region of positive pressure gradient close to the jet exit 

section. From the printed information obtained from the runs, it can 

only be said that this region of positive pressure gradient extends 

to between z = 1.5R and z = 2R. 

The effect of this high-frequency (i.e. 100 cps) oscillation of 

Case 4c above is also studied on the flow configuraticn with the 
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following parameters: 

R 
1 

= 0.563 in. 

R = 1 in. 

ul 
= 0.442 ft/sec. 

u2 = 0.518 ft/sec. 

u = 0.494 ft/sec. 

R 
el 

= 250 

R = 228 
e2 

R 
1 - = 0.563 

R 

ul - = 0.85 
u2 

Re = 496 

The experimental investigation by Seider 
4 

has shown that with 

the above parameters, the confined jet mixing region remains laminar 

upto &OR downstream. In the present program, the investigation is 

limited to a downstream distance of 8R only. The results are presented 

in Figure 12. 

The amplitude of the oscillations introduced at z = 0 is 0.0442 

ft/sec. at the centerline, and 0.0096 ft/sec. at r = R/2. The amplitude 

of the resulting oscillations is about 0.011 ft/sec. throughout at all 

locations considered. There is no distortion anywhere. The envelope 

of this resulting wave shape, therefore, consists of parallel straight 

lines symmetric about 6vz equal to zero or approximately zero. 

The region of positive pressure gradient, as observed from the 

printed information obtained from this run, is limited to between 

z = 0.15R to z = 0.5R. 
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In the light of these results for the two confined jet mixing 

4 
configurations investigated and of the experimental work of Seider , 

it seems probable that hydrodynsmical instability of the two flows 

causes them to respond differently to the same superimposed oscillations. 

Comparison With Solutions of Steady Navier Stokes Equations _~- -~.-_ _ .~ ---..~ -... - . 

During the present investigation, comparison is obtained also for 

solutions of the boundary layer equations with solutions of the Navier 

Stokes equations for identical steady flow configurations. For most 

cases considered, the two solutions differ by a maximum of about twelve 

per cent near the entrance section in the vicinity of the centerline. 

This deviation decreases rapidly with increasing radial distance as 

well as with increasing axial distance downstream. 

The steady boundary layer equations are solved for the classical 

entrance flow in a pipe using the numerical method presently 

developed. The results are compared in Figure '13 with those obtained 

by Lavan 3 who solved the Navier Stokes equations using a relaxation 

method. 

The deviation of the centerline velocity is everywhere less than 

1.5 per cent. At the half-radius, i.e., at r = R/2, the axial velocity 

deviates by about 3.3 per cent at a downstream distance z = 3R, but 

by only about 2.5 per cent at z = 9R and beyond. Near the wall at r = 

0.8R the deviation is about 2.5 per cent at z = 3R, and about 1.5 per 

cent at z = 9R and beyond. 

The steady boundary layer equations are also solved for steady 

jet mixing in a confined co-axial flow for three sets of parameters. 

The computer time for each of these runs is less than ten minutes to 

carry out the calculations to about 80R downstream. This also includes 
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the time for output of the 

The following are the 

systems considered for the 

UT 
R 

1 R2 fL 
in. in. isec 

1. 0.563 1.0 0.442 

2. 0.470 1.0 0.621 

3. 0.281 1.0 0.494 

results. 

values of the parameters for the three flow 

steady confined jet mixing problem.: 

u2 ul 
U 

f-t,: 
u2 

ft/* R R 
!sec 

Re 
lsec el e2 

0.518 0.85 0.494 250 228 496 

0.224 2.77 0.312 294 119 313 

0.490 1.01 0.490 139 354 493 

The results are compared with those of Seider 
4 

obtained by numerical 

solution of the Navier Stokes equations using the implicit alternating 

directions method. 

Figure 15 shows the comparison of the results for the first flow 

configuration. The deviation of the axial velocity at the centerline 

is about eight to nine per cent up to a downstream distance z = 16R, 

but falls off to about 5.5 per cent at z = 32R. At r = 0.44R, the 

deviation in the axial velocity from the two solutions at z = 1R is 

about eleven per cent which reduces rapidly to little over two per 

cent at z = 16R. Also, at z = 1R downstream, the deviation of nineteen 

per cent at r = 0.44R, reduces to eleven per cent at r = 0.55R. 

Close to the jet exit, the pressure gradient is observed to be 

positive. From the printed information obtained, this region of positive 

pressure gradient is found to be limited to between z = 0.15R to z = 

0.5R. 

The deviation of the two solutions is much smaller for the second 

and the third flow systems considered. 
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For the second flow configuration, as seen in Figure 16, the 

centerline axial velocity (obtained by the two methods), deviates by 

less than one per cent up to z = 5R, and by about two per cent at a 

downstream distance z = 10R. At r = 0.6R, the deviation, at z = lR, 

is about 6.7 per cent, which decreases to about four per cent at r = 

0.8R. 

Figure 17 shows the comparison of the two solutions for the third 

flow system. The centerline velocity deviates by 1 to 1.5 per cent up 

to z = 3R, this deviation becoming four per cent at downstream distance 

z = 8~. Moving away from the centerline, i.e., at r = 0.2R, the axial 

velocity at z = 1R deviates by twelve per cent, but by only little 

over eight per cent at z = 3R. 

It is to be noted that the points of largest deviation were 

selected for comparison in this discussion. The agreement of the two 

solutions is considerably better at most locations not included above. 

Sufficient printed information was not obtained for the second 

and third configurations. Hence, no statement can be made regarding 

the region of positive pressure gradient that was observed for the first 

flow configuration. 

A comparison is also obtained for the time-dependent solutions 

obtained from the boundary layer equations and from the Navier Stokes 

equation. The impulsively started entrance flow in a pipe is 

investigated. The results are compared with those of Lavan 5 obtained 

by solving the unsteady Navier Stokes equations using a relaxation 

method. For this flow problem, the entire flow region is initially at 

rest. At time t = 0+, a uniform axial velocity is imparted to the 

entire field, except at the pipe wall, where the no-slip condition is 
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maintained. The radial velocity is zero throughout. These conditions 

are maintained at the entrance section for all future times. Velocity 

profiles are then computed over the flow region as it develops with 

increasing time. 

Figure 20 shows the developing axial velocity profiles at various 

axial positions. Comparison shows that the centerline velocities 

deviate by a maximum of twelve per cent, whereas the maximum deviation 

in the axial velocities near the wall, i.e., at r = 0.8R, is about 

6.5 per cent. The results indicate that the time required to attain 

steady state increases with increasing downstream distance. The flow 

field investigated is limited to a downstream distance z = 100R. This 

region of the flow reaches its steady state in less than seven seconds. 

The steady state value of the centerline velocity at z = 1OOR is 

about 1.77 times the initial uniform velocity. Thus ) the development 

length for this impulsively started entrance flow is greater than 100R. 
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CHARTER V 
CONCLUSION 

The method developed provides a means for numerical investigation 

of time-dependent laminar incompressible boundary layer flows with 

axial symmetry. The basic requirement for the applicability of the 

method is that the flow have an "openW downstream boundary. Hence, 

flows with obstacles in their path may not be effectively treated. 

The scheme of computation is explicit in all the independent variables 

of the initial-boundary value flow problem. Numerical stability is 

assured by satisfying Karplus' criterion at all points of the compu- 

tation field. 

The main features of the method are summarized in the following: 

Any type of transverse boundary conditions, upstream boundary 

conditions and initial conditions can be handled without affecting the 

basic method of computation. No downstream boundary condition is 

needed. 

Axial pressure gradient is computed at each axial location studied. 

Hence, flows confined within finite boundaries in the transverse 

direction can be directly studied. 

Several of the assumptions of Chapter II are made only to reduce 

the number of computations. Some of these simplifying assumptions can 

be relaxed and the flow investigated, with no basic changes in the 

method of solution. Thus, specified variations of fluid properties 

like density and viscosity, inhomogeneity of the fluid media, heat 

transfer and chemical reaction can also be considered, though at the 

increased expense of computer time and memory. 

The mesh size is limited by considerations of numerical stability 
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and required accuracy and problem resolution. Therefore, large 

computer memory and computer time are the major requirements for 

obtaining a solution. In fact, these requisites are always associated 

with all-numerical solution of problems involving more than two 

unbounded independent variables, regardless of whether the computation 

scheme is explicit or implicit. The explicit scheme involves simple 

and elementary computations at a large number of points for a given 

region. Unconditionally stable implicit schemes involve less straight- 

forward computations (like iterations and matrix inversions) at a 

comparatively smaller number of points for the same region. Hence, 

obtaining the solution using either of the schemes may require 

comparable computer time. The investigation carried out for steady 

flows shows a much smaller computer time requirement for the explicit 

scheme while still maintaining close agreement with the results of the 

implicit scheme. Further, if high resolution is desired, small mesh size 

would have to be retained, and the increased computation time required 

would then render the use of implicit schemes less feasible 44 . Also, 

implicit schemes may not be recommended for solving a system of highly 

coupled equations in several variables because of the complicated 

computer program needed. 

The method is used to obtain the transient response of steady, 

confined, jet mixing to superimposed velocity fluctuations. The 

investigation is mainly confined to the-case with Reynolds' numbers of 

1650 for the jet and 1400 for the surrounding annulus. A sinusoidal 

oscillation of amplitude equal to five per cent of the local axial 

velocity, is superimposed on the axial velocity at the jet exit section. 

The response of the mixing region is observed (numerically) for various 
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frequencies of the superimposed oscillation. Only a partial study was 

possible with the computer facilities available. No general conclusions 

may be drawn based on the results of these limited investigations 

although the following remarks can be made regarding the resulting 

flow: 

The resulting flow field oscillates about its initial steady state 

at the same frequency as that of the superimposed fluctuations. 

The transient time for the resulting flow field increases with 

increase in frequency of the superimposed oscillations. 

The superimposed wave retains its sinusoidal form for low 

frequency oscillations, but undergoes distortion at higher frequencies, 

the extent of distortion increasing with increase in frequency. 

For low frequencies, the envelope of the wave in the resulting 

flow, consists of nearly parallel straight lines, symmetric about the 

line of zero deviation from the steady state. At high frequencies, the 

envelope oscillates, though at a much reduced frequency. The axis of 

the envelope shifts in the direction of positive deviation from the 

initial steady state, the extent of this shift increases with increase 

in the superimposed frequency. 

The high-frequency oscillations which undergo considerable dis- 

tortion for the flow configuration with Reynolds' numbers of 1650 (jet), 

1400 (surrounding annulus) and 2900 (overall flow) show no such behavior 

when the Reynolds' numbers are reduced to 250, 228, and 496 respectively. 

It may be mentioned here that the former flow undergoes transition to 

turbulence at a downstream distance of l-112 pipe diameters while the 

4 latter remains laminar upto z = 40R downstream . It may be, therefore, 

suspected that the difference in response of the two flow configurations 
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to the same superimposed oscillations may be due to hydrodynamic 

stability of the basic flows. 

An impulsive change, or a step change, superimposed on the axial 

velocity along a circular ring near the jet exit shows no oscillations 

or any appreciable effects in the resulting flow. 

The region of positive pressure gradient occurring close to the 

jet exit section is much smaller for the configuration with the reduced 

Reynolds' numbers than for the case with the higher Reynolds' numbers. 

As previously mentioned, the limited downstream distance and physical 

time investigated and the limited parametric study carried out prevent 

conclusive statements to be made at this stage. Further investigations 

are indicated. Also, it may be worthwhile to carry out the same study 

using the time-dependent Navier Stokes equations in order to confirm 

the validity of the use of the boundary layer equations. If the general 

nature of the two solutions is similar, the -possibility of the boundary 

layer equations being capable of predicting hydrodynamic stability of 

confined flows may be considered. 

Several steady flow configurations are investigated and the results 

compared with the available corresponding solutions of either the 

boundary layer equations obtained by using implicit computation schemes 

or of the Navier Stokes equations obtained by using iterative methods. 

Comparison of results for time-independent problems with the 

corresponding solution of the Navier Stokes equations shows a maximum 

deviation of about twelve per cent. The general nature of both 

solutions is similar. The computer time required for solution is much 

smaller with the explicit scheme developed. Hence, flows for which 

the boundary layer approximations may be justified can be treated by 
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the method developed. This may however represent a compromise between 

the degree of correctness of the solution and the effort and time 

needed to obtain it. 
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APPENDIX A 
DERIVATION OF EQUATION OF CONSTRAINT FROM TRE 

DIFFERENTIAL FORM OF THE CONTINUITY EQUATION 

The equation of constraint given by Equation (13) may be derived 

by integrating the continuity equation (4) over a complete cross-section. 

Rewriting Equation (4) in the following form 

23 r vr) + 33 r vz) = 0 (A.11 

and integrating with respect to r over the interval 0 2 r < R leads to - 

the equation 

R, R 

J 
rvr)dr + 

I 
r vz) dr = 0 

0 0 

I.e., 

r=R 

[r vr],=, + 1 r $- dr = 0 

(A.21 

(A. 3) 

The first term in the above equation vanishes because of the center- 

line boundary condition (6) and the wall boundary condition (7). 

Therefore Equation (A.3) reduces to 

which is the same as Equation (13) in Chapter II. 

Rr av 
I rLdr=O 

,b 
az (A.4) 
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APPENDIX B 
DEFINITIONS OF CONSISTENCY, 

NUMERICAL STABILITY AND CONVERGENCE 

A FDE is consistent with its corresponding PDE if the truncation 

error in the difference equation goes to zero as the spatial and the 

time steps approach zero. 

A FDE is stable if its numerical solution remains uniformly bounded 

as the computations advance indefinitely under a set of time and space 

intervals, at least one of which is fixed (bounded). In general, 

stability is a function of only the difference equations and the boundary 

and initial conditions, and has no direct connection with the differential 

problem. 

The exact solution of a FDE converges to the exact solution of 

its corresponding PDE if the truncation error of the solution goes to 

zero as the space and time steps approach zero. 

Consistency and stability, considered individually, are only 

necessary, not sufficient for convergence. But consistency and 

stability together constitute the necessary as well as sufficient 

conditions of convergence for a properly posed initial value 

40 
problem . 
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APPENDIX C 
TRUNCATION ERRORS OF THE 

FINITE DIFFERENCE EQUATIONS 

The finite difference approximations, given by expressions (20), 

(21), (22) are generated by expanding the function #J in a Taylor's 

series about the point (m,n,k). Thus 

@(m+l,n,k) = a4 4(m,n,k) + Ax J- +(&til 
x (m,n,k) 2! ax21(m,n,k) 

+. . . 
(m,n,k) 

Also, 

$(m-l,n,k) = $(m,n,k) - Ax 2 
I (m,n,k) (m,n,k) 

+. . . 
(m,n,k) 

(c.1) 

cc.21 

The function $(m,n,k) is assumed to possess continuous partial 

derivatives of the orders appearing in Equations (C.l) and (C.2) above. 

The truncation errors of the finite difference approximations are 

then given as below: 

E =2!!4. - $(m+l,n,k) - $(m,n,k) - 
fda I ax m n k -- Ax 

, 3 

where E fda is the truncation error in the forward difference 

approximation to the first derivative, as given by Equation (20), 

i.e., 
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E Ax a2 
fda = -Tax mrk- -4 

- . . 
, a, m,n ,k 

53 =2!& 
da aXmnk- I ' 4(m,n,k) - $(m-l,n,k)l 

3 3 I Ax J 

m,n ,k 
+. . . 

m,n,k 

cc.31 

(c.4) 

where % da is the truncation error in the backward difference approxi- 

mation to the first derivative as given by Equation (21). 

The central difference approximation (22) is obtained by sub- 

tracting (C.2) from (C.l) and the corresponding truncation error is 

E =!!A!. _ $(m+l,n,k) - $(m-l,n,k)? 
cda ax 2Ax 1 

cc.51 

where E cda is the truncation error in the central difference approxi- 

mation to the first derivative as given by Equation (22). 

The approximation to the second derivative obtained by adding 

(C-1) and (C.2) involves a truncation error given by 

@(m+l,n,k) - 2+(m,n,k) + $(m-l,n,k)' 
(Ad2 d 

=---- 
mnk-“’ 

, 9 
Cc.61 

where E 2c 
is the truncation error in the finite difference approxi- 

mation to the second derivative at the point (m,n,k). 

The following expressions are also useful in determining the 

98 



truncation errors of the finite difference equations to be considered 

subsequently: 

E =2 92 b-l/2 ,n ,k > I 

=- - . . . 
(m-1/2,n,k) 

(c.7) 

where E 
Cl/2 

is the truncation error in the central difference approxi- 

mation to the first derivative, at the point (m-1/2,n,k). 

E 
ml/2 

= $(m-1/2,n,k) - 

m-l,n,k 
- . . . 

m-l,n,k 
(c.8) 

where E 
Y/2 

is the error of approximating $(m-1/2,n,k) by the arithmetic 

mean of the values ofOat the points (m,n,k) and (m-l,n,k). 

The Time-Dependent Equations 

Momentum Equation. Substituting the expressions obtained earlier 

for the truncation errors in the various approximations used, the 

truncation error ETM in the finite difference approximation. (given by 

Equation (55)) to Equation (3) at the point (m,n,k+l) is obtained as 

follows 

av 
ETM 

=l+v avZ av 

at -+ v 
r ar 

z+L22-, 
a% 

= v avz -_-- - 
2 a2 p az ar 2 ( 1 r -ar 
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vz(m,n,k+l) - vz(m,n,k) 
At 

+&%I 
I ' az (n,k+l) 

+ vr(m,n,k+l) 
[ 

vs(m+l,n,k+l) - vs(m-l,n,k+l) 
- 2Ar 1 

+ vs(m,n,k+l) 
vz(m,n+l,k+l) - vs(m,n,k+l) 

AZ 1 
vz(m+l,n,k+l) - 2vz(m,n,k+l) + vZ(m-l,n,k+l) 

- v 
(ArJ2 

i 

V 

-r(m) 

vz(m+l,n,k+l) - v (m-l,n,k+l) 
Z 

2Ar 1 I (c.9) 

At a2vz =-- 
2 at I - vrb,n,k+l) ‘;I 

2 a% 
-. 

(m,n,k+l) 
.$ (m n k+l) 

9 , 

a% 
- vz(m,n,k+l) p$ I (m ,n ,k+l ) 

+vf$ g&l Ar2 
+$JT- 

a3 vz 

(m,n &+I) 
ars I (m,n,k+l) 

+ (terms containing higher powers of Ar, AZ, At) (c.10) 

Em is the truncation error in the time-dependent momentum equation. 

SinSe az (n,k+l) 1 I 
22 is evaluated by manipulation of the momentum and 

the continuity equations, no additional error is involved due to this 

term in Equation (C.9). 

Since all quantities appearing in the expression (C.10) for Em 
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are evaluated at the point (m,n,k+l), the subscripts are omitted in the 

following expression and 

r 
a2v 1 

ETM 
= At[$j$j 

r a& a4v 
+ (Ar)2 - i vr d + $%$ + 6r;)m) 

+ (terms containing higher powers of Ar, AZ, At) (c.11) 

Now, from physical considerations, it may be claimed that the 

quantities appearing as coefficients of At, AZ and (Ar)2 in Equation 

(C.ll) are bounded. Therefore, there exist three constants Cl, C2 and 

c3) 
such that these coefficients are less than or equal to the constants 

cl' C2 and C 
3' 

respectively, i.e., 

Em 5 Cl At + C2Az + C3Ar2 (c.12) 

Therefore, as At, AZ and Ar approach zero, the truncation error 

Eml vanishes. This establishes that the FDE given by Equation (55) is 

a consistent representation of the PDE given by Equation (3). 

Momentum Equation at the Centerline. -- The truncation error Em 
a 

involved in approximating the centerline momentum Equation (3a) by 

the finite difference equation (62) is obtained as 

avZ 

Ema=at+ v 

-+LXfL avZ 
ah2 

z az P az 
- 257-- 

I- 
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+ 

L 

l.e., 

vz(m,n,k+l) - vz(m,n,k) 

At 
+L i&i 

I ' az (n,k+l) 

vz(m,n,k+l) 
L 

vz(m,n+l,k+l) - vz(m,n+l,k+l) 

AZ I 

2v 
I 

2vZ(m+l,n,k+l) - 2vz(m,n,k+l) 

(h-j2 1 
(c.13) 

a% a2v 

ETM 
=$+$ - vz(m,n,k+l) p $ 

a b,n,k+l) (m,n,k+l) 

Ar2 +2v - 
a 4~z 

12 ar4 I (m,n,k+l) 

+ (terms containing higher powers of Ar, AZ, At) cc.141 

where E 
rma 

is the truncation error in the time-dependent momentum equation 

at the centerline. 

Dropping the subscripts (m,n,k+l), 

+ (terms containing higher powers of Ar, AZ, At) (c.15) 

This may be re-written as 

At + C5 AZ + C6 Ar2 (c.16) 

where C4, C 
5 

, C6 are constants, used to replace the bounded coefficients 
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of (Ar)2, AZ and At in Equation (C.15). 

From (~.16), it follows that the truncation error Em vanishes 
a 

as At, AZ, Ar approach zero, showing thereby that Equation (62) which 

approximates Equation (30) satisfies the consistency condition. 

Continuity Equation. The truncation error ETC in approximating 

the partial differential equation (4) by the finite difference 

equation (69) is given by 

V av av 
ETC=r+e+e 

vr(m,n+l,k+l) + vr(m-l,n+l,k+l) 1 

r(m-l/2) 

: +. 
vr(m,n+l,k+l) - vr(m-l,n+l,k+l) 1 b 

Ar 

vz(m,n+l,k+l) - vz(m,n,k+l) : 
+ 

2Az 

I 

: + 
vz(m-l,n+l,k+l) - vz(m-l,n,k+l) 

I 2Az J 
(c.17) 

1 Ar2 a2vr =- Ar2 a3vr 
r(m-l/2) ~83--- (m-l,n+l,k+l) 24 %?- (m-1/2,n+l,k+l) 

a2vz 

(m,n+l,k+l) +a22 (m-l,n+l,k+l) 1 
Ar2 a2vz ! 

- T F/(m-l,n+l,k+l) 

f (terms containing higher powers of Ar, AZ, At) (c.18) 

103 



1 
i’- r m- i ( ll,2) l 

a2vr 

ST-- 

(m-1/2 ,n+l,k+l) 
= Ar2 1 a3vr 

-2473-- 

I 

I 

I (m-l,n+l,k+l) 

+ AZ 

(m-l,n+l,k+l) 

(m,n+l,k+l) 

Again, the coefficients of (Ar)2 and AZ, being bounded, expression 

(C.19) may be written as: 

ETC ( ‘7 Ar2 + C8 AZ 

where C 
7 

and 5-3 are bounded constants. 

Therefore, for sufficiently small AZ and Ar, the truncation error 

in the approximating equation goes to zero as AZ, Ar approach zero. 

Hence the finite difference representation (69) of the continuity 

equation (4) satisfies the consistency condition. 

(m-l,n+l,k+l) I (c.19) 

(c.20) 

The Time-Independent Equations 

The essential differences in the differential equations describing 

the time-dependent problem and the time-independent problem are 

i) the dependent variables in the time-dependent problem are 

functions of three independent variables - r, z, t. The dependent 

variables in the time-independent problem are function of r, z only, 

and 

104 



ii) the momentum equation for the time-dependent problem 
av 

contains the additional term 2which vanishes in the time-independent at 

problem. 

The differencing scheme for the r and the z-derivatives is the 

same in both cases, i.e., r-derivatives are approximated by central 

differences, and z-derivatives by forward differences in the momentum 

equation and backward in the continuity equations. 

The expressions for the truncation errors in the time-independent 

equations are therefore obtainable directly from the corresponding 

expressions for the time-dependent equations by setting At = 0. 

Thus, the finite difference equations approximating the differential 

equations governing the time-independent problem may be shown to 

satisfy the consistency condition. 
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APPENDIX D 
KARPLUS' CRITERION FOR NUMERICAL 

STABILITY OF FINITE DIFFERENCE EQUATIONS 

Karplus 39 developed a criterion for stability of finite difference 

equations, based on the stability analysis of an electric network since 

the equilibrium equations for the network are similar to the FDE 

considered. 

The FDE whose stability at the point (m,n,k) is to be considered 

is arranged in the following form 

A ij% ("mLi,n+J,k+% - 'm,n,k) = ' - 
(D.1) 

where the subscript "m" refers to a bounded space co-ordinate. Then the 

FDE is stable if 

i) the coeffiaients A ija are all of the same sign CD.21 

or 

ii) when all A ij% are not of the same sign then 

a) for Al,O,O y .O; 

i jTLo 1 Aug < O , Y-, 

and 

b) for Al,O,O < 0, 

c) 
.i A ij!Z ' 0 

i,j ,il=O,l 

In the above, i,j and R are not equal simultaneously. 

(D.3a) 

(D.3b) 

In general, it is always possible to arrange a FDE in the form of 
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Equation (D.l) if the FDE represents an approximation to a PDE. 

The advantages of the above approach are that the criterion is 

simple to apply and does not require linearization of the equations. 

Without further complication, the criterion is also applicable to 

equations in several independent variables, and to equations in which 

the coefficients are functions of the independent variables. In several 

cases, the results are the same as those obtained by the more familiar 

methods of Hildebrand and von Neumann. The latter are comparatively 

complex to apply. Karplus' criterion is not over conservative if the 

specified boundary and initial conditions are taken into account. 
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APPENDIX E 
STABILITY ANALYSIS OF TKF: FINITE DIFFERENCE EQUATIONS 

The conditions for numerical stability of the FDE used in computing 

the problem variables are derived by using the method developed by Karplus 39 . 

The Time-Independent Equations 

Momentum Equation. The FDE form of the momentum equation is given 

by Equation (23) which is used to compute the axial velocity vs(m,n+l) 

by the resulting explicit expression (24). To analyse the stability of 

Equation (23) it is re-written in the form corresponding to Equation (D.l),to 

yield the equation 

vs(m+l,n) - vs(m,n) -*- 
v 

2r(m)Ar 

Vi(m-1,n) - vz(m,n) 
/ 

11 
vr(m,n) 

V 
- 

2Ar 2r(m)Ar 

+ I !V z( m,n+l .) - vz(m,n)](Yz~~yn))- $ [z)n = 0 (E.1) 

Next,it is necessary to determine the sign of the coefficients of the 

square bracketed terms in Equation (E.l) 

i) Coefficient of 
1 
vz(m+l,n) - vz(m,n)' 

1 

a) If vr(m,n) is negative, the coefficient 

vr(m,n 1 
2Ar -&- 2r;)m) Ar > < O (E.2) 

with no restrictions on Ar. 
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b) If vr(m,n) > 0, this coefficient is considered as 

vr(m,n) 
-&- 

V 
2Ar 2r(m)Ar 

Ar Ar:- 1 - - 
2r(m) 

Now, 

r(m) = (m-1)Ar. 

Therefore, Equation (E.3) may be re-written as 

vr(m,n) V 
2Ar -&- 2r(m)Ar 

Ar - 1 - 2m-2 

vr(m,n) 
2v 

Ar - 2m-1 
2m-2 

(E. 3) 

(x.4) 

Hence, for vr(m,n) > 0, the coefficient under consideration is 

negative when 

v,(m,n) 
2v 

Ar c 2m-1 
2Q-2 

I.e., 

Ar < 

It may be noted that, if the inequality 

Ar < 2v 
v,h,n> 

(E.5) 

(E.6) 

(E.7) 
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is satisfied, then inequality (E.6) will also be satisfied. 

ii) Coefficient of vs(m-l,n). - vs(m,n) may be written as 
I 

vr(m,n) V 
2Ar -&+ 2r(m)Ar 

Ar 
Ar - ' + 2r(m) 

{ vr(m,n) 
= + \- 2v 

1 
Ar - 1 + Pm-2 4 

i.e., 

vr(m,n) V 
2Ar -&+ 2r(m)Ar 

= & ( 
vr(m,n) 

- 2v Ar 
-2m-3 

2m-2 > 

a) If vr(m,n) < 0, Equation (E.8) yields that the 

coefficient under consideration is negative if 

(E.8) 

(E.9) 

b) If vr(m,n) > 0, the coefficient is always negative. 

iii) Coefficient of 
[ 
vs(m,n+l) - vs(m,n) is positive for 1 

vs(m,n) > 0. Since backflow is excluded from consideration, this 

coefficient will be only positive. 

'Ihds, the coefficients are not all of the same sign. Hence, 

Equation (24) is not unconditionally stable. 

The conditions for stability of Equation (24) are then obtained 

by employing the conditions (D.3a) and (D.3b) of Karplus' method. 
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a) If vr(m,n) < 0, Equation (24) is stable if 

2v vzb,n) 

-(Br)2+ AZ " 

. I.e., if 

vz(m,n) 
Azc 2v (h-l2 

(E.lO) 

(E.ll) 

where Ar is not limited from stability considerations, and is selected 

by considering the physical problem. 

b) If v,(m,n) > 0, then the conditions of stability are given by 

the inequalities (E.7) and (E.ll) 

(E.7) 

and 

AZ < 
vz(m,n) 

2v (Arj2 (E.ll) 

Momentum Equation at the Centerline. At the centerline the finite 

difference form of the momentum equation is given by Equation (29). 

Arranging it in the form corresponding to Equation (D.l) results in 

the equation 

jvs(m+l,n) - vz(ma)] (- & ) 

? + Lvz(m,n+l) - vz(m,n) ] (y)) - : [GE] = o 
n 

(E.12) 

It is necessary to examine the coefficients of the square bracketed 
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terms for their signs. 

The coefficient ,of the first term is always negative. 

The coefficient of the second term is positive for vz(m,n)>l),xi.e., 

for flows without backflows like the ones under study. 

Therefore, the conditions for stability of Equation (E.12) may 

be determined by using condition (D.3b) of Karplus' criterion. 

Thus, Equation (E.12) is stable if 

Vz(m,n) 
-&+ Az z-0 

i.e., if 

vz(m,n) 
Az < 4v (h-l2 

(E.13) 

(E.14) 

where stability imposes no restriction on the size of Ar. 

Continuity Equation. Equation (41) is the finite difference form 

of the continuity equation and is used to compute the radial velocity 

vr by the resulting expression (43). 

For investigating its numerical stability by Karplus' method, it 

must be arranged in the form corresponding to Equation (D.l). Since 

the continuity equation is written at-the points (m-1/2,n+l), the 

various terms in v r must be pivoted about the value vr(m-1/2,n+l). 

Since this value does not actually appear in Equation (41), such 

arrangement yields equal and opposite coefficients for the difference 

terms. Hence, no information regarding stability is obtainable in 

this manner. 

Recalling that (m-1/2,n+l) are but fictitious points, Equation 

(41) is arranged to correspond to Equation (D.l) by pivoting the 
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terms in vr about the value vr(m-l,n+l). Thus, 

r Ivr(m,n+l) - vr(m-l,n+l) & + 1 ' 
I( - ) z? 

2 
+ 2m-3 ( ) 2 vr(m-l,n+l) 

+ 
vz(m,n+l) - vz(m,n) + vz(m-l,n+l) - vz(m-1,n) 

2Az 

= 0 (E.15) 

Only one pertinent difference term appears so that the continuity 

equation is unconditionally stable. The terms in vz may not enter 

the stability condition in any case, since they appear as known through 

earlier stable computations and cannot contribute to instability. 

The Time-Dependent Equations 

Momentum Equation, Equation (55) is the finite difference form of 

the time-dependent momentum equation. Re-arranging it to correspond to 

the form of Equation (D.l) gives 

vz(m+l,n,k+l) - vz(m,n,k+l) I( 
vr (m ,n ,k+l ) V 

2Ar -&- 2r(m)Ar > 

vs(m-l,n,k+l) - vz(m,n,k+l) 
vr(m,n,k+l) V 

- 2Ar -*+ 2r(m)Ar > 

+ vz(m,n+l,k+l) - vz(m,n,k+l) 

+ [vz(m,n,k) - vz(m,n,k+l)] (- &) + i [z](n,k+l) = O 

(~.i6) 
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The coefficients of the square bracketed quantities are next 

investigated. for their sign. 

i) Coefficient of .vz(m+l,n,k+l) - vz(m,n,k+l) 
r I 

a) If vr(m,n,k+l) c 0, the coefficient is unconditionally 

negative. 

b) If v_(m,n,k+l) > 0, the coefficient is treated in 

a manner similar to that for 

(23) of the time-independent 

Thus, for vr(m,n,k+l) > 

the corresponding coefficient in Equation 

problem. 

0, the coefficient is negative when 

2v 2m-1 
Ar < vr(m,n,k+l) 2m-2 I 1 

The inequality (E.17) will be satisfied if 

Ar < 2v vr(m,n,k+l) 

(E.17) 

(E.18) 

Condition (E. 18) may be used rather than condition (E.17) to determine 

the value of Ar. 

ii) Coefficient of 
[VZ( 

m-l,n,k+l) - vz(m,n,k+l) 1 : 

This coefficient is also considered by a similar approach as 

for the corresponding coefficient in Equation (23). Thus, the 

coefficient is re-written in the form 

vr(m,n,k+l) 
-*+ 

V 
Ar 2r(m)Ar 

vr(m,n,k+l) -a?ks 
2v 2m-2 > 

(E-19) 
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Therefore 

a) If vr(m,n,k+l) < 0, the coefficient under consideration 

is negative if 

2v 
Ar < Ivr(m,n,k+l) (E.20) 

b) If vr(m,n,k+l) > 0, the coefficient is always negative. 

iii) Coefficient of 
[ 
vz(m,n+l,k+l) - vz(m,n,k+l) 1 

For vz(m,n,k+l) > 0, i.e., for flows without separation and 

backflow, this coefficient is positive. Since for the flows under con- 

sideration, vz(m,n,k+l) is non-negative, the coefficient 

vzh,n,k+l) 
AZ is unconditionally positive. 

iv) Coefficient of 
1 
vz(m,n,k+l) - vz(m,n,k) 1 is always negative. 

Thus, the coefficients of the square bracketed terms in Equation 

(E.16) do not all have the same sign. Thus unconditional stability 

cannot be achieved under statement (D.2). 

The sign of the first coefficient in Equation (S.16) is the factor 

for deciding which one of the conditions (D.3a) and(D.3b) provide the 

appropriate criterion for stability of Equation (55) and hencefar the 

stability of Equation (56). Statement (D.3b) is found to be applicable. 

Therefore 

a ) For vr(m,n,k+l) < 0, the scheme is stable if 

2v 
-m+ 

vz(m,n,k+l) 

AZ +o (E.21) 

From the inequality (E.21) it can be claimed that Equation (55), 

and hence Equation (56), is stable if 
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AZ < 
vz(m,n,k+l) 

(E.22) 

where Ar and At are ascertained from physical considerations of the pro- 

blem. Stability imposes no limitation on their magnitude. 

b) For vr(m,n,k+l) > 0, the conditions of stability are 

2v 
Ar < vr(m,n,k+l) (E.23) 

AZ c 
vs(m,n,k+l) 

(E.24) 

where.At is still free from stability restrictions. 

Momentum Eauation at the Center-. The finite difference form 

of the centerline momentum equation is given by Equation (62). 

Re-arranging it in the form corresponding to Equation (D.l) results 

in the equation 

vs(m+l,n,k+l) - v (m,n,k+l) Z I 

vz(m,n+l,k+l) - vs(m,n,k+l) 1 
;'v,(m,n,k+l) 

\. AZ > 

vz(m,n,k) - vz(m,n,k+l) 

1 +- = 0 P (E-25) 

An examination of the coefficients of the various square bracketed 
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terms reveals that 

i) the first coefficient is always negative, 

ii) the second coefficient is positive for the flows to be 

considered (i.e., for flows where vz I( 0) 

iii) the third coefficient is always negative. 

Therefore, statement (D.3b) of Karplus' criterion is applicable 

for determining the conditions for numerical stability of Equation (E.25) 

and hence of Equation (62). Consequently, Equation (621, and hence 

Equation (63) which resulted from Equation (62) , is stable if 

vz(m,n,k+l) 1 
-&T+- -->o 

AZ At 
(~.26) 

i.e., if 

AZ < 
vz (m ,n ,k+l) 

4v 
GF +& 

(E.27) 

where Ar and At are not limited by stability considerations. 
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APPENDIX F 
DERIVATION OF EQUATION OF CONSTRAINT FROM 

FINITE DIFFERENCE FORM OF THE CONTINUITY EQUATION 

The finite difference form of the continuity equation is given by 

Equation (43). This equation is re-written as follows 

(m-1) v,(m,n+l) - (m-2) vr(m-l,n+1) 

+@Pk Az [ vz(m,n+l) - vz(m,n) + vz(m-l,n+l) - vz(m-1,n) 1 
= 0 (F.1) 

where m=2,3,...,M,M+l. 

For these values of m, Equation (F.1) yields 

vr(2,n+l) - v,(l,n+l) 

+L Ar' 
4 E[vz(2,n+l) - vZ(2,n) + vz(l,n+l) - vz(l,n) = 0 1 

2 vr(3,n+l) - vr(2,n+l) 

+3 &I 4 Az vz(3,n+l) - I 
vZ(3,n) + vz(2,n+l) - v 

Z (2,n) = 0 1 
. 
. (F.2) 
. 

(M-l) vr(M,n+l) - (M-2) vr(M-l,n+l) 

+ y z vZ(M,n+l) - vZ(M,n) + vZ(M-l,n+l) - vZ(M-1,n) 
c 1 

= 0 

M vr(M+l,n+l) - (M-l) vr(M,n+l) 

2M-1 Ar + - z vZ(M+l,n+l) - 4 C 
vz(M+l,n) + vZ(M,n+l) - vZ(M,n) 1 

= 0 
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-P 

Addition of the above equations results in the following equation 

M vr(M+l,n+l) - vr(l,n+l) 

+$ $f I vz(l,n+l) - vs(l,n) 3 

+AK Az 
[ 

vs(2,n+l) - vs(2,n) 
3 

vs(3,n+l) - vs(3,n) 1 
+ . . . + (M-l) g vs(M,n+l) - vs(M,n) 

C 3 

=o 

From the centerline boundary condition (44) 

vr(l,n+l) = 0 

and from the wall boundary conditions (45) 

vr(M+l,n+l) = 0 

vs(M+l,n+l) = 0 

vs(M+l,n) = 0 

(F. 3) 

(F.4) 

(F.5) 

Using conditions (F.4) and (F.5), and dividing through by the non-zero 

constant common factor Ar, Equation (F.3) reduces to 

vz(l,n+l) - vz(l,n) 

AZ 1 

M 

+ 
vz(m,n+l) - vz(m,n) 

1 
= 

AZ 
0 (F.6) 

which is the same as (52) of Chapter III. 
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